
  
 

 

 

 

  

PATRICK TALON 



Summer 2018  University of Lausanne Patrick Talon 

Table of contents 
 

Abstract ............................................................................................................... i 

 

Acknowledgment ................................................................................................. ii 

 

1 Introduction .................................................................................................. 1 

 

2 Problem statement ...................................................................................... 3 

 

3 Literature review .......................................................................................... 7 

3.1 Remote sensing .................................................................................... 7 

3.2 Computer vision .................................................................................... 8 

3.3 Semantic segmentation ......................................................................... 9 

3.4 Conventional techniques ..................................................................... 10 

3.5 Machine learning ................................................................................. 11 

3.6 Artificial neural networks ..................................................................... 12 

 

4 Artificial neural networks theory ................................................................. 15 

4.1 Artificial neuron ................................................................................... 15 

4.2 Artificial neural networks ..................................................................... 18 

4.2.1 Learning algorithm ........................................................................ 19 

4.3 Convolutional neural networks ............................................................ 21 

4.3.1 Down-sampling ............................................................................. 22 

4.3.2 Up-sampling ................................................................................. 25 

4.4 SegNet and U-Net Architectures ......................................................... 26 

4.4.1 U-Net ............................................................................................ 26 

4.4.2 SegNet ......................................................................................... 27 

4.5 Accuracy ............................................................................................. 28 

 

5 Deep learning frameworks ......................................................................... 29 

 

6 Methodology .............................................................................................. 33 

6.1 Data .................................................................................................... 33 

6.1.1 Vaihingen datasets ....................................................................... 34 

6.1.2 OFS - Mos25 datasets .................................................................. 37 



Summer 2018  University of Lausanne Patrick Talon 

6.2 Training the models............................................................................. 40 

 

7 Results ....................................................................................................... 43 

7.1 Visual assessment .............................................................................. 43 

7.1.1 Vaihingen – 512 ∗ 512 patches ..................................................... 43 

7.1.2 Vaihingen – 768 ∗ 768 patches ..................................................... 45 

7.1.3 OFS-Mos25 – 512 ∗ 512 patches ................................................. 47 

7.1.4 OFS-Mos25 – 768 ∗ 768 patches ................................................. 49 

7.2 Models accuracy ................................................................................. 51 

7.2.1 Vaihingen datasets ....................................................................... 51 

7.2.2 OFS-Mos25 datasets .................................................................... 53 

 

8 Discussion ................................................................................................. 54 

 

9 Conclusion ................................................................................................. 58 

 

10 References ............................................................................................. 60 

 

11 Annexes ................................................................................................... A 

11.1 Annex 1 – Accuracy and loss graphics ................................................. A 

 



i 
 

 

 

Abstract 

This master thesis addresses the question of how convolutional neural networks 

(CNN) can help to achieve better accuracies for semantic segmentation of 

remote sensing data, in a view of automated and decision oriented applications. 

The attempt to answer this question is made by comparing the results achieved 

by two distinct models inspired by the popular U-Net and SegNet architectures. 

The experiments will be conducted on two remote sensing datasets that have 

been captured at different geographic scales. Results show that there is no 

unique solution for semantic segmentation of remotely sensed data and that 

different levels of scale would require different architectures of CNN. In order to 

achieve acceptable level of accuracies for public or private decision oriented 

applications, CNNs require more imposing labelled data for training and more 

balance between the land cover classes. 

 

Résumé 

Ce travail de mémoire s’intéresse à la question de l’usage des réseaux de 

neurones convolutifs (CNN) pour d’obtenir de meilleurs taux de précision lors de 

la segmentation sémantique de données issues de la télédétection, dans une 

perspective d'applications automatisées et orientées vers la décision. La 

tentative de réponse à cette question s’est faite en comparant les résultats 

obtenus par deux modèles distincts inspirés des architectures U-Net et SegNet. 

Des tests ont été effectués sur deux ensembles de données de télédétection 

capturés à différentes échelles géographiques. Les résultats montrent qu'il 

n'existe pas de solution unique pour la segmentation sémantique des données 

de télédétection et qu’une analyse à différentes échelles nécessiterait différentes 

architectures de CNN. Afin d’atteindre un seuil de précision acceptable pour des 

applications publiques ou privées axées sur la décision, les CNN requièrent des 

quantités de données d’entrainement plus imposantes et un meilleur équilibre 

entre les classes qui composent la couverture du sol. 
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1 Introduction 

Urban space is subject to many experiments and debates in the idea of making 

it more pleasant and attractive on a daily basis and in a fair way, for all its users 

and inhabitants. In a small country like Switzerland, densification and reduction 

of urban sprawl rate are part of the main objectives and projects of urban 

planning. It is not easy for cities and towns to grow and flourish guaranteeing a 

quality habitat for each individual while taking into account environmental issues. 

The territory is a complex space resulting from dynamic socio-spatial processes 

and the analysis of the distribution of the features composing it can allow a better 

understanding of these spatial phenomena. 

 

Several researches have already been carried out thanks to various tools and 

methods allowing the analysis of the territory with the classification of remote 

sensing imagery at pixel level, a technique more commonly referred as semantic 

segmentation. Histogram analysis of aerial and satellite images is the first 

technique that made possible accurate semantic segmentation of land cover. 

More elaborate techniques were then invented, especially in the field of machine 

learning, like support vector machine. More recently with the development of 

deep learning techniques, artificial neural networks (ANN) are experimented in 

different branches of science. A specific kind of ANN called convolutional neural 

network (CNN) is already recognized as state-of-art methods for computer vision. 

They are interesting in this context because of their relatively low costs and the 

speed at which they can process heavy and abundant data such as high-

definition satellite images. 

 

This type of technique allows by extension a characterization of the land use, and 

thus a classification of the territory into different categories. This provides a better 

understanding of the spatial organization and a thoughtful and relevant typology 

of the territory. Such analysis can be useful to planners and politicians in defining 

efficient, environmentally friendly and equitable land use policies. 

 

The objective of this paper is to identify the advantages and disadvantages of 

using CNN for semantic segmentation of remote sensing imagery. The attempt 
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to achieve this will be made by comparing two different models of convolutional 

neural networks that are inspired by the U-Net and the SegNet architectures. Two 

different sources of data will be used and will be pre-processed in two different 

ways, which makes a total of four distinct datasets to be processed by the CNNs. 

The first data source is the Vaihingen dataset that is made of high resolution 

aerial orthophotos and their corresponding images with ground truth 

classification at pixel level. The second one is a satellite capture that covers the 

entire area of Switzerland, with an associated ground truth image that has been 

prepared specifically for this project. 

 

In the first part, the problem statement is presented. A review of the literature 

focused on semantic segmentation and artificial neural networks is then made.  

The next section is more theoretical, providing the fundamental principles of ANN 

and deep learning, and explaining more specifically the U-Net and SegNet 

architectures that will be used and compared during this experiment. As the 

performances of artificial neural networks are highly correlated with the quality of 

the data, it is then necessary to describe the datasets in a statistical and 

qualitative manner to highlight its particularities. The results of the different 

semantic segmentation are then presented, and a discussion is made about the 

questions raised in the problem statement. A conclusion summarizes and put into 

perspective what has been accomplished in this paper. 

 

Target readers are typically students who have a background in geography, and 

more particularly spatial analysis. It can also be a good way for anyone curious 

about ANN to be introduced to the main principles that relies behind this 

promising machine learning field, without the need of having a strong 

mathematical knowledge.  
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2 Problem statement 

Remote sensing is involved in a wide scope of research and applications in 

geosciences. For a simple satellite photo of a targeted region, or more advanced 

analysis and monitoring of ecosystems, meteorological phenomena and land 

use, remotely sensed data is collected from many different sources and 

processed on a daily basis. Understanding the landscape is one of the historical 

objectives and purposes of geographers, and with the appearance of the spatial 

analysis paradigm in the middle of the 20th century, this innovative source of data 

allowed researchers to study Earth through new dimensions and at a brand new 

scale.  

 

A wide range of methods and tools for remote sensed data analysis have been 

developed since then and spread through the scientific communities. It became 

possible to acquire a better understanding of the processes and dynamics that 

alter our direct and distant environment. For the first time in history, people were 

able to monitor their habitat at a global scale and observe natural and anthropic 

changes that could potentially have impacts on the ecosystems. 

 

Remote sensing imagery can contain a lot of complex information. After the 

recent and commonly called “digital revolution”, an overflowing amount of digital 

data production occurred. It became necessary for researchers to develop new 

methods for efficient extraction of patterns from data, and accurate modelling of 

the underlying multivariate systems. At the same time, computers drastically 

gained in power and the prices for high performing systems significantly 

decreased. This allowed a fast and systematic data processing and analysis, 

essential for a good monitoring of environmental and socioeconomic 

phenomena. 

 

Amongst the analysis methods applied to remotely sensed data, the 

segmentation and classification of digital image data at pixel level, commonly 

called semantic segmentation, might be one of the most frequently used 

nowadays. When applied to remote sensed data, each pixel of the original image 

is assigned to a specific semantic class that is supposed to represent it best. 
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Such classification helps to simplify and summarize the information in the 

perspective of detecting trends over space and time, and eventually decision 

making. 

 

Most of recent semantic segmentation algorithms use pixel’s RGB as well as non-

visible electromagnetic radiations values as data input. The nature of the data 

can have a considerable impact on the results, as collection conditions are rarely 

similar. Thus, choosing the right dataset and adapted preprocessing methods are 

serious matters when it comes to work on a particular topic. When it comes to 

working on large amounts of data and phenomena that we do not have accurate 

model for, machine learning methods seem to be taking center stage since the 

middle of 20th century. The ability for a model to learn given a set of training 

samples and then automatically find patterns and features on new data has 

shown promising prediction results with various kinds of classification and 

regression tasks. It is thus quite naturally that geosciences researchers started 

to explore and develop machine learning techniques that were able to deal with 

remote sensing data. Artificial neural networks are one of them. They are 

designed to deal efficiently with multivariate non-parametric systems and find 

patterns in a large amount of data thanks to supervised learning.  

 

Artificial neural networks seek to make a computer achieve operations that are 

inspired by biological brain specific functions: detect simple features in an 

environment that can be combined to generate complex and high level 

representations, in order to recognize scenes or objects in new environments. 

This is a classification task that can typically be applied to visual and sound 

perceptions. In order to achieve that, the biologic brain needs to learn and build 

an experience from all the “data” that has already been processed, using 

hierarchical and connected layers of neurons that operates simple computations 

on an input signal to produce a specific output that will be transmitted to other 

neurons. This whole process allows the brain to build representations in order to 

make sense of all the information that comes from the environment. Given a 

reasonable amount of digital training data, an artificial neural networks can 

automatically perform similar tasks, like image and speech recognition. Each 

layer of an artificial neural network is made of simple computational units, the 
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artificial neurons that have a specific task, and are in general all connected to 

every neurons in a following layer. The learning operates as the data goes 

through the layers and the network adjusts its weights and bias to minimize an 

error function in order to obtain the desired output. Such algorithm can be applied 

to remote sensing data in order to produce a land cover classification in the form 

of a semantic segmentation. 

 

Training a neural network with an aerial images dataset represents a heavy task 

in terms of memory for a computer and can be hardly achievable. The solution to 

this problem is the convolutional neural network (CNN), specially designed for 

image recognition. This kind of technique belongs to a specific machine learning 

branch called “deep learning”, that has recently gained in interest for the 

researchers. It consists of artificial neural networks that are designed with a lot 

of layers of artificial neurons that are hierarchically organized. When using 

convolution layers, the number of entries that each neuron has to process is 

lessened, keeping at the same time the local correlations of pixel values. The first 

layers of the network can detect low level features of the data, and the 

representation level increases when the layers are deeper. The learning is called 

“deep” because of that long sequence of layers that processes the data. 

 

CNN have already been tested on remotely sensed data to produce land use 

classification by semantic segmentation, and is giving good results as of today. 

It seems however not being in practical use yet for this kind of data, as institutions 

and companies may not be ready to use this new technology. Investments in 

terms of time and money are necessary for a significant transition to these new 

methods and labelled data is not always easily available. 

 

The key challenges to generalize the use of CNN for semantic segmentation of 

remote sensing imagery are numerous and raise many questions. Considering 

the variations in data collection methods, is it possible to train and use a single 

CNN and keep a good accuracy over time? Scale is a persistent challenge in 

geography. How do CNN react to variation of scale in the data? And is the state-

of-the-arte accuracy achieved by CNN good enough for blind trust in the outputs 

of land cover classification and for decision making?  
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The research question for this project can be formulated as follow: To what extent 

can convolutional neural networks perform efficient and accurate semantic 

segmentation on multi-scale remote sensing imagery with a view of making an 

automated and decision oriented application? 

 

Some guiding hypothesis about semantic segmentation with CNN on remote 

sensing data are identified as a leading research axis for this general question.  

Considering what is being said in most of the recent literature (Castelluccio, 

Poggi, Sansone, & Verdoliva, 2015; Fu, Liu, Zhou, Sun, & Zhang, 2017; 

Längkvist, Kiselev, Alirezaie, & Loutfi, 2016; Marmanis et al., 2016; Volpi & Tuia, 

2016), it is generally admitted that CNN are accurate models for pixel-wise 

classification of remote sensing imagery. They became efficient alternative in 

terms of time and costs for decision oriented applications as related technologies 

have substantially gained in accessibility and user-friendliness. But no method is 

perfect for accomplishing every kind of tasks and CNN are still facing a few 

challenges. Since they became a global phenomenon, many different model 

architectures have been proposed (Badrinarayanan, Kendall, & Cipolla, 2015; 

Long, Shelhamer, & Darrell, 2015; Ronneberger, Fischer, & Brox, 2015) and 

often only for particular datasets. In remote sensing analysis, scale is an 

important aspect and the ability of CNN to perform efficiently at geographic multi-

scale level is not really discussed in the literature. It is noticeable in the different 

experiments that CNN have difficulties to reproduce “sharp” geometries during 

semantic segmentation, and this can represent a challenge especially for land 

cover when trying to classify human built structures. The question of consistency 

in data acquisition process is also central and it is not guaranteed that today’s 

CNN architectures will still be effective for next generation remote sensing data. 

  



Summer 2018  University of Lausanne Patrick Talon 

7 
 

3 Literature review 

This review of the literature gives a particular attention to the history of semantic 

segmentation techniques on remote sensing data, including more advanced and 

recent works on neural networks. The first part will focus on remote sensing and 

their global implication that their generalization has for geosciences. The second 

part reviews image segmentation techniques. For each mentioned approach, a 

link to remote sensing will be made in order to understand how the various 

paradigms led to the usage of artificial neural networks for dense pixel-wise 

prediction from remotely sensed data. The last part will focus on convolutional 

neural networks and will describe the state of the art regarding the theoretical 

framework used in the context of this paper. 

 

3.1 Remote sensing 

Remote sensing can be defined as the science of collecting data about an object 

of study without being in direct contact with it, i.e. from a distance (Richards & 

Jia, 2006). It is most of the time associated to aircraft and satellite platforms that 

use passive or active sensors to collect georeferenced image data of the Earth 

surface and the atmosphere. An active sensor works like a radar and sends its 

own signals that interact with a surface and bounces back, returning measures. 

A passive sensor responds to emissions that come from the reflection of the solar 

radiation and captures an image of the targeted area for a wide range of the 

electromagnetic spectrum. In the case of satellite platforms, the raw data is 

transmitted electronically to a receiving station located on the surface of earth. 

For aircrafts, the data is collected after landing. 

 

Remotely sensed data has a few properties that are important to keep in mind 

when working with it. Digital image is always captured with predetermined spatial 

and spectral resolutions. Also the characteristics of the raw data is very different 

depending on which platform and which sensor is used (Lu & Weng, 2007). The 

scientist must therefore choose the right source of remote sensing data when 

exploring a specific problematic and must be aware of the scale aspect. It is 

possible to transform an image to a lower resolution, but there are several ways 

to do so, and they all have an influence on the outputs of an analysis. Brightness, 
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shadows, nebulosity, atmospheric and topographic conditions in general can 

have a great impact on the quality of the data, and generate bias that requires a 

lot of pre-processing work in most situations (Young et al., 2017). 

 

Even if the term “Remote sensing” appeared in the 60’s, it all started in the middle 

of the 19th century, with a simple photography taken from a balloon (Kitchin & 

Thrift, 2009). The usage of this technique became a strategic tool during the First 

World War with photographs being taken from an airplane. Many other 

applications were developed later. In the 60’s, the first satellites were launched 

in space and allowed a global monitoring of earth’s surface. With that new 

abundant source of data and the digital revolution, researchers worked on more 

and more efficient digital image processing techniques. Nowadays, analysis of 

heavy imagery data has become even more accessible mainly because of two 

factors. The first one is the large increase in the number of satellites that are 

orbiting around the planet, providing countless of data to work on. The second 

one is the global increase in the number of highly performing computing devices 

that became available for private individuals and at reasonable prices in the retail 

as well as on the cloud.  

 

Geosciences were greatly impacted by the advent of remote sensing (Kitchin & 

Thrift, 2009). Various applications like natural resources monitoring and weather 

forecast are used on a daily basis and people are making use of remotely sensed 

data sometimes without realizing. Spatial analysis might be the most affected 

field in the sense that Earth surface data could be captured at brand new scales, 

more frequently and effortlessly. Methods for land use classification were quickly 

developed to reach until today an almost automated process and researchers 

are still working on it with the shared objective of reaching higher classification 

accuracy.  

 

3.2 Computer vision 

Computer vision, or machine vision, is the field of Artificial intelligence that seeks 

to make computer automatically able to “see” like humans and recognize objects 

and scenes in their context and environment, for 2-D as well as 3-D content 



Summer 2018  University of Lausanne Patrick Talon 

9 
 

(Szeliski, 2011). Given an image or a video, the key challenge for the algorithm 

is to create representations at multiple levels of abstraction and recognize the 

various features that composes the image to produce a segmentation in order to 

isolate the desired features. Where the task seems easy to achieve from a human 

point of view, it is complex to translate it to machine language and plenty of ways 

are described in the literature. From automated waste sorting to self-driving cars, 

the number of possible applications has been growing faster recently, mainly 

thanks to the diffusion of artificial neural networks techniques that allow close to 

real-time analysis of digital images. 

  

3.3 Semantic segmentation 

Image segmentation is the art of dividing an image into non-intersecting subsets, 

considering predefined criteria (Cheng, Jiang, Sun, & Wang, 2001.; Dey, Zhang, 

& Zhong, 2010; Dhanachandra, Manglem, & Chanu, 2015; Haralick & Shapiro, 

1985). With semantic segmentation, or dense pixel-wise labeling, each pixel of 

the image is assigned to a specific semantic class. It is qualified as “semantic” as 

the attempt is made to give a meaning to the pixels. Semantic segmentation 

could therefore be defined as the art of understanding the role of each pixel within 

an image in order to label it as belonging to a specific object class (Thoma, 2016). 

 

Haralick and Shapiro (1985) introduced their paper with a definition of what a 

good result for image segmentation should be to their sense. Their ideas could 

be summarized with the following points: 

 

- Homogeneity in the segmented regions. 

- No “rings” or “holes” in the segmented regions. 

- Adjacent segmented regions should have significantly different properties 

- Boundaries of the segmented regions should be simple and smooth. 

 

These few statements are a good mean to realize what are the main difficulties 

of pixel-level image segmentation and should be kept in mind when evaluating 

the results obtained by the various methods that will be introduced next. 
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3.4 Conventional techniques 

The very first techniques for semantic segmentation were mainly using the 

histogram of greyscale images, where thresholds could easily be set to segregate 

the pixels into two or more subsets depending on the intensity levels of the image. 

This task can easily be performed if the distribution of the pixel values is not 

normally distributed, and “valleys” appear in the histogram, which can be used 

as thresholds. In reality, this kind of method is rarely accurate as the different 

features composing an image are almost always mixed into a normal distribution 

(Pal & Pal, 1993; Thoma, 2016; Yuheng & Hao, 2017). Thus, some features from 

a targeted object in the picture can be mixed up with features from the 

background or from another object. The same issue occurs when the image 

contains noise, resulting in a poor global coherence in the segmentation. 

 

Another traditional way of segmenting an image is edges detection. An edge can 

be considered as a locally abrupt discontinuity in neighboring pixels values, which 

is often an actual boundary between real features composing an image (Cheng, 

Jiang, Sun, & Wang, 2001; Pal & Pal, 1993; Yuheng & Hao, 2017). The edges 

can be highlighted thanks to the use of filters, then isolated with some post 

processing techniques. One of the common problems encountered with this 

method is that the results proposed by edge detection algorithms can seem 

unnatural when compared to what an actual human eye would detect. It is also 

complicated to classify features of an image using their boundaries only, thus 

ignoring other properties of the image that can be useful in such discrimination 

task. 

 

Conventional techniques can operate well enough on greyscale images that 

contain simple objects. However, the needs of contemporary society require 

segmentation of color images as they are a source of a lot of additional high level 

information. This kind of data requires more advanced algorithm in order to be 

processed. 
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3.5 Machine learning 

More recently, the field of artificial intelligence is being widely explored, and some 

researchers started to use machine learning for image classification. Machine 

learning is the art of making a computer learn from a reference dataset and create 

a model of the underlying phenomena that produced this particular data. When 

the model is correctly trained, it is supposed to be able to apply well on new data. 

Machine learning is a wide field that gathers many and various kind of methods, 

but all of them can be distributed within two groups: unsupervised and supervised 

learning models. 

 

Unsupervised models are designed to learn from the statistical characteristics of 

the training data directly. The reference dataset does not need to be labelled, 

and the learning algorithm finds patterns by itself. These models are useful to 

find trends in data for phenomena that are not well known and identified. Low 

level features of an image are often directly related to RGB values and related 

image metrics such as brightness, contrasts or textures and can be relatively well 

segregated with clustering algorithms like K-means and Random Forest 

Classifier, as well as variations of them (Dhanachandra, Manglem, & Chanu, 

2015). 

 

Supervised learning models are based on algorithms that can learn from labelled 

reference dataset. Data is labelled when the user has assigned a target class to 

each sample before feeding the learning algorithm with it. The objective is to 

produce a specific output for a specific input by minimizing the error rate during 

the training stage. To do so, the algorithm has the ability to adjust weights and 

parameters, until global accuracy of the output approaches a maximum. This 

represents the main challenge of computer vision as of today, and it is generally 

admitted that good image segmentation results are obtained with supervised 

learning models like support vector machines (Chapelle, Haffner, & Vapnik, 1999; 

Wang, Wang, & Bu, 2011), or K-nearest neighbors (Bieniecki & Grabowski, s. d). 

Application of all these methods to remote sensing data for semantic 

segmentation have been successfully carried out by the research community 

(Huang, Davis, & Townshend, 2002; Mountrakis, Im, & Ogole, 2011), but 
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appeared to be less efficient for high resolution imagery where low to high 

dimensional information needs to be extracted (Fu, Liu, Zhou, Sun, & Zhang, 

2017). The detection of such features requires more advanced techniques that 

are less sensible to noise and able to understand various organizations of simple 

features into more complex ones. 

 

3.6 Artificial neural networks 

Amongst supervised machine learning techniques, ANN have recently recorded 

an increase of occurrences in the literature for image segmentation and for 

various branches of science. The simplest kind of ANN is the perceptron 

(Rosenblatt, 1958), which represent the very first and fundamental ANN. It is 

composed of a unique artificial neuron that produces a binary output decision. All 

the ANN architectures that followed since then are based on the same principles. 

In their recent form, ANN are made of computational nodes, the artificial neurons, 

that are connected and arranged in layers that are able to learn from large training 

dataset by adjusting weights and biases in order to minimize an error function 

(Haykin, 1999). The main difference with other supervised machine learning 

techniques is that this is done without any task-oriented coding prerequisites; the 

network calibrates itself to produce the desired output for a specific data and 

human’s involvement is minimal. In its simplest form, the first layer represents 

the normalized input data, the classification decision happens in the last layer of 

the network, and one or more layers in-between called hidden layers build low to 

high level representations in order to recognize simple patterns in the data and 

combines them into more complex ones. All the power of a neural network comes 

from its ability to generalize and predict well on data that it has never seen. ANN 

are not recent and their potential was already identified years ago, but stayed in 

the background because of lack of training data and computing power.  

 

Early experiments with remote sensing imagery resulted in a globally poor 

accuracy compared to other conventional methods (Mas & Flores, 2008), mainly 

because land cover classification usually needs to be done at large scale with 

heterogeneous high resolution data. This causes a regular ANN to struggle with 

the amount of computation required, especially when the classification is done at 
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pixel-level. Recent progresses in the field allowed a more efficient semantic 

segmentation with ANN. Since the 2010’s researchers are working on a specific 

type of ANN based methods that became an important subfield of machine 

learning called deep learning. The learning delivered by an ANN’s architecture is 

considered deep when the number of layers is significantly increased, allowing 

multiple levels of abstraction and non-linear operations in order to understand 

that data. Nowadays, many different architectures of deep neural networks are 

being experimented and suggested for many kinds of application. For computer 

vision and image classification tasks in general, CNN are generally admitted as 

state-of-art method. 

 

CNN are specifically designed for image classification. Convolution applied to 

digital images allows to extract the important features, while reducing its 

dimensionality and increasing its depth. This is achieved with the usage of 

successive layers of convolution filters and pooling for subsampling. CNN first 

showed impressive results for image categorization tasks like recognition of 

handwritten digits (LeCun, Bottou, Bengio, & Haffner, 1998) and later other image 

classification tasks (Krizhevsky, Sutskever, & Hinton, 2017), and worked pretty 

well on remote sensing data for scene classification (Castelluccio, Poggi, 

Sansone, & Verdoliva, 2015; Yu, Wu, Luo, & Ren, 2017).  

 

CNN were then adapted to produce semantic segmentation by adding up-

sampling, or transposed convolution layers between the convolution and the final 

classification in various architectures of CNN (Chen, Papandreou, Kokkinos, 

Murphy, & Yuille, 2016; Long, Shelhamer, & Darrell, 2015; Pinheiro & Collobert, 

2015). This process allows to map the input image to an input with the same size, 

performing a semantic classification at pixel level. It didn’t take long until 

researchers explored the use of this new technique on remote sensing data and 

many different architectures of CNN have been suggested (Fu, Liu, Zhou, Sun, 

& Zhang, 2017; Marmanis et al., 2016; Volpi & Tuia, 2016). 

 

U-Net is a famous example that was originally made for greyscale microscopic 

scale biomedical image segmentation (Ronneberger, Fischer, & Brox, 2015). U-

Net architecture was designed in 2015 to give a binary output to each pixel of the 
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input image, in order to highlight particular structures. It was then improved and 

adapted for more than two labels classification tasks. 

 

One of the most cited application examples nowadays are the autonomous 

driving systems that have the capacity to analyze road scene in almost real-time, 

and identify the various objects and elements in its environment that gives the 

possibility to the self-driving system to take decisions by itself. SegNet is a 

popular architecture inspired by the VGG16 (Simonyan & Zisserman, 2014) that 

performed accurate semantic segmentation on the road scene images and 

videos of the CamVid dataset (Badrinarayanan, Kendall, & Cipolla, 2015). 

 

U-Net and SegNet are the two architectures that have been chosen for the 

present project as they often appear in the literature and seem adapted to 

semantic segmentation of remote sensing data. They use different architectures 

and different methods for up-sampling and pixel-wise classification. 
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4 Artificial neural networks theory 

ANN are inspired by the functioning of the biological brain in the processes of 

recognition. Even if these processes are not yet fully understood by scientists 

yet, a few major principles have been identified and are commonly admitted in 

the field of neurosciences. ANN do not pretend to be a simulation of the animal 

brain, but the main concepts are inspired by these key principles. 

 

4.1 Artificial neuron 

The neuron is the main unit of the central nervous system. It is made of four 

fundamental elements: the dendrites, the nucleus, the axon and the synapses. 

Information in the form of electrical signals are transmitted from the dendrites to 

the nucleus of the neuron in order to be processed. A new signal can then be 

fired and transmitted via the axon to adjacent neurons that is connected by the 

synapses and so on. The connections between neurons can have different 

intensities and the information going through is impacted by it. This organized 

and connected network of neurons allows its host to capture and identify stimuli 

from his environment, which makes interaction with it possible. 

 

Figure 1 

By analogy, an artificial neuron is the fundamental unit of the ANN. It is 

represented in Figure 1. The whole operation can also be transcribed in a 

relatively simple equation (Equation 1). 
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The neuron receives one or more weighted input data in the form of (𝑤𝑖 ∗ 𝑥𝑖), for 

example pixel values, that are summed up. These weights 𝑤𝑖 are one of the 

parameters that are adjustable and participate in the learning. Usually a bias 𝑏 is 

then added to this sum. The result goes through an activation function 𝜑() that 

decides if the neuron can fire and transmit a signal 𝑦 to other artificial neurons.  

 

𝑦 =  𝜑(∑(𝑤𝑖 ∗ 𝑥𝑖) + 𝑏)

𝑖=0

 

Equation 1 

The activation function can be of many forms but some are more common. The 

usual given example is the basic threshold function, or step function (Figure 2), 

that gives a value of 0 or 1 to the artificial neuron’s output. 0 means that the 

neuron won’t fire, 1 means that it will.  

 

Figure 2 

This function was initially used in the perceptron, the very first model of the most 

basic artificial neuron. This step function becomes limited when the desired 

output is not of binary form. It is more common nowadays to work with ANNs that 

need to perform a classification decision for multiple outputs and it is therefore 

Threshold function 
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more convenient to obtain from the network a percentage of activation for each 

neuron, and a set of probabilities for all the possible outputs. This can be done 

for instance with the Softmax function (Figure 3). 

 

Figure 3 

This function also introduces non-linearity to the network which allows to increase 

the levels of representation that can be built by stacking multiple layers of artificial 

neurons. It is also a tool of normalization for the ANN as it squeezes its output 

between 0 and 1. 

 

Figure 4 

Softmax function 

ReLU function 
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More recently and specifically for semantic segmentation with CNN, another type 

of activation function is used: the rectified linear unit (ReLU). This non-linear 

function, plotted in Figure 4, gives a value of 0 to any negative input. In the 

context of CNN, this function is interesting as it is computed faster, and about 

50% of the neurons will not be activated, thus reducing significantly the global 

computational heaviness of the network and hence the time required for the 

training.  

 

4.2 Artificial neural networks 

An artificial neuron is a relatively simple computational unit and the task it can 

perform does not require a lot of energy. When these neurons are abundant and 

interconnected, they can interact and accomplish much more complex tasks. 

Figure 5 shows an example of a simple artificial neural network. The neurons are 

organized in layers that are connected in a parallel structure. In general, a neuron 

from a layer is connected to every neurons of the next layer. A connection means 

that the output of a neuron becomes the input of another one and the data flow 

goes in one direction that is generally represented as going from left to right in 

the figures that can be found in the literature. There are three different types of 

layers. The first one is the input layer that feeds the raw data to the network. The 

second type is the hidden layer. There can be many of these in an ANN, and 

these are basically where most of the learning happens. In general, the deeper 

a layer is (i.e. the closest to the output layer), the higher the abstraction level. 

The last kind of layer is the output layer, which contains as many neurons as the 

number of targeted labels for classification. This layer is where the classification 

decision probabilities are made for each input. To each connection in the network 

is associated a unique weight that gives a greater or lesser importance to the 

signals emitted from a neuron to other ones. Biases are the other learnable 

parameters used in the hidden and output layers that gives more flexibility for 

fitting the data. Both weights and biases are initially randomly generated numbers 

that are adjusted by the learning algorithm during the training phase. These 

parameters store the experience acquired thanks to a labelled training dataset 

and are responsible for the knowledge that the network acquires. 
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Figure 5 

4.2.1 Learning algorithm 
For the learning to happen, an adjustment of the weights and biases is done 

multiple times for each given sample of the training dataset, in order to obtain the 

desired classification output. This process is often referred as an input-output 

mapping. The adjustments are not randomly made but managed by the learning 

algorithm. In the first stage, the algorithm computes how badly the network is 

performing by comparing during the training each predicted output to a ground 

truth classification associated to the training input sample. This comparison is 

performed by computing the total error made by the output nodes. 

 

𝐸𝑜1 =  
1

2
(𝑇𝑜1 − 𝐴𝑜1)2 

Equation 2 

In Equation 2, the squared error 𝐸 of the output neuron 𝑜1 is calculated by 

subtracting the actual its output 𝐴𝑜1 to the targeted output 𝑇𝑜1. This result is then 

squared and multiplied by 
1

2
. This is repeated for all the output neurons 𝑂 of the 
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network and all these errors are then summed up to give the total error for one 

training sample, as per Equation 3.  

𝐸𝑡𝑜𝑡 = ∑ 𝐸𝑜𝑖

𝑂

𝑖=1

 

Equation 4 

In the context of ANN, this is usually referred as the cost function, which can be 

seen as a tool for monitoring the learning performance of the network. The 

objective of the ANN is to adjust itself in order to have all the 𝐴𝑜 getting closer to 

the 𝑇𝑜, which comes to find the minimum of the cost function.  

 

The only possible way for the network to adjust itself  is to update its weights and 

biases. This can be achieved thanks to gradient descent. Gradient descent 

algorithm computes the slope at any point of the function thanks to the derivative 

of 𝐸𝑡𝑜𝑡 with respect to a weight 𝑤𝑖. 

 

𝐺 =
𝜕𝐸𝑡𝑜𝑡

𝜕𝑤𝑖
 

Equation 5 

This slope is then used as an indicator showing the direction where the lowest 

local point of the curve is. A step of a size determined by the learning rate 𝜂 is 

made towards that direction and this represents an update 𝑤𝑖
+ of the weight 𝑤𝑖. 

 

𝑤𝑖
+ =  𝑤𝑖 − 𝜂 ∗ 𝐺 

Equation 6 

This process is iterated for each input sample multiple times until a minimum is 

approached for both weights and biases cost functions. As the number of 

parameters in ANNs is usually very large, the learning algorithm is able to 

estimate a local minimum, and rarely the function’s global one. This entire 

process is called backpropagation, because the cost is calculated in the output 

layer, and then operates layer by layer in the backward direction, until reaching 

and adjusting the weights between the input and the first hidden layer. 
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Backpropagation was a big step towards the recent spreading of ANN in machine 

learning methods. 

 

The particularity of neural networks compared to other machine learning methods 

is that this optimization has to be done on many variables instead of just a few. 

Let a low resolution greyscale digital image of size 28 ∗ 28 be an input for the 

basic neural network as shown in Figure 5. Let 𝐻1 be the number of neurons in 

the first hidden layer, 𝐻2 the number of neurons in the second, and 𝑂 the number 

of neurons for the output layer. Each pixel’s value 𝑥 𝑖 is an input, which gives a 

total of 𝐼 = 784. The number of weights 𝑁 that the network needs to optimize is  

𝑁 = (𝐼 ∗ 𝐻1) + (𝐻1 ∗ 𝐻2) + (𝐻2 ∗ 𝑂), giving a total of 6’376. Added to this, the 

number of bias 𝑀 is equivalent to 𝑀 = 𝐻1 + 𝐻2 + 𝑂, making a total of 21 for this 

example. When adding more layers and working with higher resolution data, the 

task of parameters optimization can quickly become computationally heavy and 

that is the reason why dedicated frameworks have recently been developed for 

deep learning. 

 

4.3 Convolutional neural networks 

Particularly efficient for computer vision, CNN is a type of deep ANN that seek to 

imitate animal vision in the processes of pattern recognition and scene 

classification made possible with the visual cortex. Instead of reacting directly to 

light stimuli, CNN gives the possibility for a computer to interpret the numbers 

that constitute the pixel values of an image and map them to classification scores. 

They are a particular kind of architecture of ANN that use mainly convolution and 

max-pooling layers as hidden layers, and usually fully connected layers for the 

classification probabilities output. CNN perform well with images as they consider 

the spatial information and relative position of the pixels. When carrying out a 

convolution on a raw image input, the neurons from the hidden layer are not 

linked to every input pixel as for traditional ANN, but are connected locally. CNN 

can take inputs with 3 dimensions: a height and a width representing the size of 

an image, and a depth that represents the channels, typically R, G and B values.  
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4.3.1 Down-sampling 
The first hidden layer of a CNN is usually a convolutional layer (CONV). A square 

window of predetermined dimension that contains weights is positioned on the 

input image and computes a feature map by moving to every possible position. 

This window is usually referred as a filter, or kernel. Figure 6 is an illustration of 

the process. In this example, a feature map of size 7 ∗ 6 and depth 1 is produced 

by multiplication of the weights from the filter of size 3 ∗ 3 with the corresponding 

superposed input pixel values of an input image of size 8 ∗ 7 and depth of 3. At 

one location, this is done for all the channels. All the multiplication results are 

then summed up to give the first element of the feature map, which represent an 

activation of neuron. As mentioned earlier, this neuron is not connected to all the 

input neurons: only to 3 ∗ 9 in the example of Figure 6. The filter then moves one 

step to the right, overlapping with 18 out of 9 pixels from the first computation, 

and repeats the process until reaching the right boundary of the image. It moves 

then one step down and scans the next line and so on until the feature map is 

fully computed. All this process can in fact be explained as a succession of 

matrices multiplications. A padding can also be used to avoid the shrinking of the 

input size that is inherent to convolutions, by adding a virtual pixels margin of size 

1 (for 3 ∗ 3 filters) with null values on each side of the input image. It also possible 

to vary the size of the strides made by the filter. 

 

A single convolutional layer can create multiple feature maps by using multiple 

filters that are able to extract different features from the input data, with the 

condition that the filters are all of same size. Feature maps are key elements of 

CNN as they are able to detect primary elements like curves, edges, or colors 

that compose an image. By adjusting the weights inside the filters thanks to 

backpropagation, the feature maps can learn to be receptive to specific kind of 

elements and the network learns how to combine them into more complex 

structures in the next convolutional layers, in order to produce the desired 

classification outputs. 

 

After computing the feature maps in a convolutional layer, a ReLU activation 

function is usually applied to integrate non-linearity to the model. As seen before, 

ReLU replaces all negative values of the feature maps by zeros, making the 



Summer 2018  University of Lausanne Patrick Talon 

23 
 

training faster without affecting the global accuracy of the CNN. Keeping the 

content of Figure 6 as an example, the output of a convolutional layer with ReLU 

activation function would be a map of size 7 ∗ 6 that contains neuron activations, 

with a depth equal to the number of filters used. This entire output can now 

become the input to another layer. 

 

 

Figure 6 

The pooling layer is the other kind of layer that is used in CNN. Most of the time, 

it is used after each convolutional layer of the network. It takes as input each 

feature map and produces a subsampling, as shown in Figure 7 for the most 

common type of pooling, the max-pooling. 

 

Max-pooling (POOL) is a subsampling operation that retains the maximum value 

within a window of predetermined size. This window moves on the entire feature 

map with no overlaps and creates a new output of smaller size. Using a 2 ∗ 2 

window as in Figure 7 reduces the number of values of the feature maps by a 

factor 4 which is an obvious way of lessening the computational heaviness of a 

network. This layer is also useful for a few other reasons. First, it helps to prevent 

an over-fitted model as it summarizes the information by decreasing the number 

of learnable parameters. Secondly, it makes the model insensible to spatial 
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variance of the features and objects, which can still be detected wherever they 

are located on the input image as high values will always be returned. Unlike 

convolutional and fully connected layers, pooling layers does not have any 

weights to adjust and simply perform a fixed subsampling operation. 

 

Figure 7 

Fully connected layers (FC) are used at the end of the CNN to produce the output 

in the desired shape. They are characterized as fully connected as opposed to 

the convolutional and max-pooling layers that are not. Each neuron of this layer 

receives as input each activation from the preceding layer. In fact, they are 

hidden layers as described in Figure 5, and can also be stacked. In general CNN 

architectures end with fully connected layers a Softmax activation function that 

provides the final prediction probabilities for each class. 

 

When a CNN is designed with many layers and becomes very deep, it becomes 

more prone to over-fitting as the number of parameters increases considerably. 

Adding dropout layers to the network is a way to reduce this phenomenon by 

randomly deactivating a predetermined percentage of neurons. It is also a good 

way to decrease significantly the duration of the training. Most of the time dropout 

is applied to the entire network but it is also possible to target specific layers. 

 

All these layers and operations can be stacked and combined in many different 

ways, and each architecture can have its own advantages and disadvantages. In 

the end, the challenge is to find an optimum between depth of the neural network 
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and performance in terms of training time. Figure 8 shows a typical architecture 

of CNN. 

 

Figure 8 

4.3.2 Up-sampling 
Semantic segmentation requires more than just convolutional and sub-sampling 

layers, as the prediction is not done for an entire scene, but at pixel level. In fact, 

it needs layers that will do the exact opposite operations on the data after the 

convolution stage, until the model delivers an output image of the same size as 

the input, with each pixel being labelled with the class that has the highest 

probability. Up-sampling can be achieved with the usage of transposed 

convolution layers (Dumoulin & Visin, 2016). Transposed convolution works like 

a normal convolution, but zeros are added between all the values of the input as 

shown in Figure 9. The result is an output of larger size than the input. As for 

usual convolutional layers, the strides, padding and filter sizes can be adapted to 

produce various output shapes, and the weights of the filters are learnable. 

Mapping an input pixel to an output labelled pixel through a neural network might 

seem complicated to achieve when considering the amount of connections. As 

convolution, pooling and transposed convolution layers are made of neurons that 

are not fully, but locally connected to the pixels of the input image, an inherent 

connectivity pattern exists and makes this pixel-wise classification possible. 
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Figure 9 

Transposed convolution is not the only up-sampling method for semantic 

segmentation with CNN. When applying max-pooling to feature maps issued 

from the convolution layers, it is possible to store the information that describes 

the position of the maximum value extracted from each max-pooling window (see 

Figure 7). This information is stored in the form of arrays of indices that can be 

used to up-sample the feature maps into sparse feature maps, that replaces the 

missing values with zeros. This up-sampling method performs particularly fast as 

there are no added weights to train, unlike the transposed convolution. 

 

4.4 SegNet and U-Net Architectures 

The two CNN models that have been selected for the experiments conducted in 

this paper are slightly modified versions of the SegNet and the U-Net. The 

following figures (Figure 10, Figure 11) are representations of the original 

architectures that have been suggested in the respective scientific articles.  

 

4.4.1 U-Net 
U-Net is made of 18 convolutional layers, 4 transposed convolution layers, 5 

max-pooling that appear after each 2 convolutions in the encoder stage. In the 

decoder part, transposed convolutions up-sample the feature map and two 

convolutions are done after each of them. A Softmax classification is performed 

at the end. This model is heavy as there are many convolution layers, and each 

of them have weights and biases to learn. The actual model used for the 
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experiments in this project is a lighter version named Mobile U-Net. The main 

difference is that conventional convolutional layers are replaced by depth-wise 

convolutional layers. With this kind of layer, the convolution is done separately 

for each channel with filters of size 1 ∗ 1. These changes trade a part 

classification accuracy for more efficiency, but remains interesting for some tasks 

that needs to be done on low power devices. 

 

Figure 10 

4.4.2 SegNet 
SegNet is made of 20 convolutional layers, 4 max-pooling layers, and 4 up-

sampling layers. The convolution stage begins with 2 convolutional layers with a 

max-pooling. This is repeated once, and the following is similar but with 3 

convolutional layers.  There is usually no transposed convolution in a SegNet 

architecture. 
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This model uses the pooling indices for up-sampling and does not have any fully 

connected layer after the convolutions. Softmax classification is made at the end 

of the network. This CNN has a symmetrical shape and has less parameters to 

train than the U-Net, as the up-sampling is done with the pooling indices method.  

Although its architecture remains similar, the SegNet inspired encoder-decoder 

used in the present experiments is using transposed convolutions for the up-

sampling stage, as the framework used does not have an implemented function 

for extraction of pooling indices yet. Mobile U-Net and SegNet are similar in their 

architecture, but Mobile U-Net is supposed to output less accurate results as it 

was designed to be lighter for mobile applications.  

 

4.5 Accuracy 

The accuracy of a model is the percentage of correctly predicted samples 

reported to the total number of samples. In the context of CNN, the accuracy 

measures the percentage of pixels that have been labelled with the target 

semantic class as described in the associated ground truth image. Accuracy is 

usually computed at the end of the training with multiple test samples picked from 

the dataset and that have never been seen before. It can also be calculated 

regularly during the training on a validation dataset in order to have an indication 

on whether the model is performing well or not. 
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5 Deep learning frameworks 

The generalization of deep learning techniques has largely been supported by 

the emergence and the development of dedicated libraries and frameworks that 

are now open source and easily accessible on internet. A large community is 

interested in these technologies, and experiments and progresses are made on 

a daily basis by both artificial intelligence professionals and amateurs. Most of 

the libraries are developed for usage with Python language and can be installed 

on most operating systems. The next few paragraphs will introduce the most 

popular frameworks1 for deep learning. 

 

The first major framework is the very popular TensorFlow2. TensorFlow is an 

open source deep learning framework that provides adapted environment and 

tools for designing and developing deep neural networks. It was developed by 

Google’s AI research team “Google Brain” and the code was released in 2015 to 

the public. Python is considered as a slow language as it runs the code line by 

line. The particularity of ANN is that an optimization has to be done on millions of 

variables in a parallel way instead of just a few for traditional Machine Learning 

techniques. This can be computationally very heavy when executed exclusively 

with Python. TensorFlow was specifically designed to operate efficiently with 

such computation task on large arrays that are called “tensors” in this context. 

Thanks to the library’s ability to process multiple variables in parallel, the 

computation’s speed is increased significantly.  

 

First the user defines the neural network’s computational graph using 

TensorFlow’s tools and functions. Then a session needs to be run in order to 

feed the input data to the graph, and train the neural network. The session runs 

in a C++ environment that operates much faster than Python, and then returns 

the results to the user. In other words, Tensorflow uses the readability and 

relative simplicity of Python language to define various parameters and the 

                                                           
1 Popularity ranking of deep learning frameworks according to 
https://blog.thedataincubator.com/2017/10/ranking-popular-deep-learning-libraries-for-data-science/  
2 Tensorflow is available at https://www.tensorflow.org/  

https://blog.thedataincubator.com/2017/10/ranking-popular-deep-learning-libraries-for-data-science/
https://www.tensorflow.org/
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computational graph and runs it in a much faster C++ environment before 

returning the outputs back in the Python interface. 

 

Besides the fact that it was developed by a company occupying center stage in 

the computer market, there are few reasons why Tensorflow became so popular. 

First it was one of the first to provide a more readable syntax for Deep Learning, 

making the development and testing of neural network architectures much easier 

for researchers. It is also very flexible as the user can easily switch from Central 

Processing Units (CPU) to Graphics Processing Unit(s) (GPU) or Tensor 

Processing Units (TPU) platforms to run a session, without any modification of 

the code. The software also provides visualization tools for the computational 

graph, and for various statistics related to the training, and assessment of the 

classification accuracy all along the process. 

 

Theano3 is considered as the first attempt to build a deep learning library using 

computational graphs in a python environment and running on either CPU or 

GPU. It was developed in an academic setting by a group of researchers at the 

Université de Montréal. While its development came to an end in September 

2017, it remains a popular library as of today. It might however be gradually 

superseded by more recent frameworks. 

 

Caffe4 is another deep learning framework that was created by Yangqing Jia 

during his PhD from 2014 onwards. This library is quite similar to TensorFlow but 

is more oriented for computer vision problems. It also provides pre-trained 

weights which can allows faster training in some particular cases. Facebook 

developed and released in 2017 their own version of the library, Caffe2, which is 

more modular and lighter for usage on mobile devices essentially. 

 

PyTorch5 is a fully Python integrated library for deep learning. The key difference 

with other frameworks is that it not required to entirely define the computational 

graph before testing the code, and debugging can be done progressively. It is 

                                                           
3 GitHub page at https://github.com/Theano/Theano/  
4 GitHub page at https://github.com/BVLC/caffe  
5 GitHub page at https://github.com/pytorch/pytorch  

https://github.com/Theano/Theano/
https://github.com/BVLC/caffe
https://github.com/pytorch/pytorch
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similar to NumPy library in the sense that it facilitates the use of arrays but is built 

to run efficiently on GPU. 

 

On top of these leading deep learning libraries, projects of high-level libraries 

recently emerged. Keras6 for instance was developed with the objective of 

allowing fast experiments with only a few lines of code. This library can run on 

TensorFlow, Theano, or other fundamental frameworks backend. TFLearn7 is 

another example that only runs with Tensorflow. This kind of easy-to-use libraries 

probably participated to the growing of deep learning techniques in research 

communities or for use by individuals. 

 

In order to work with these libraries and train deep neural networks in a 

reasonable time window, it necessary to have access to at least one high 

performance and recent GPU. Most of the time, these frameworks can run on 

either CPU(s) or GPU(s), though running on GPU will always be much faster. 

 

There are two possibilities for training an ANN. The first one is to own or build a 

local installation with adapted computer components. Investment costs can be 

important for an acceptable computing power and the installation of Deep 

Learning libraries can take a bit of time, and also expertise as there can be many 

dependencies and version issues that need to be solved during the process, 

especially on Windows. The alternative is to use cloud platforms that provides 

powerful CPU’s and GPU’s. These online platforms are designed to be user-

friendly and time efficient but can become costly depending on the nature of the 

task. Typically, the user buys computing time, writes the algorithm as if he would 

run it on a local machine, and uploads the code and the dataset on the platform. 

The training can be launched and everything happens in the cloud. The output is 

in the form of files that can be downloaded afterwards. This method might remain 

cheaper than building a local installation in most situation. In the end, it is 

essential to identify the needs of a project in order to optimize costs and time. 

 

                                                           
6 GitHub page at https://github.com/keras-team/keras  
7 GitHub page at https://github.com/tflearn/tflearn  

https://github.com/keras-team/keras
https://github.com/tflearn/tflearn
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The Semantic Segmentation Suite8 has been used in the context of the present 

project. It consists of an open source project that allows fast switch between the 

main CNN models that appear in the literature and that are ready-to-use. As of 

today, a total of 12 different models are available for training and testing, and 

more are about to be implemented. The “Encoder-decoder based on SegNet” 

and the “Mobile UNet for Semantic Segmentation” are the two models that has 

been used for the present experiments. The Semantic Segmentation Suite also 

provides tools that simplify the record of accuracy during the training, as well as 

a loss and accuracy charts afterwards. The user needs to preprocess his 

datasets in a particular way which is described in the methodology chapter. The 

models run on a local machine with TensorFlow on a NVIDIA GTX 1080 and with 

16GB RAM.  

  

                                                           
8 GitHub page at https://github.com/GeorgeSeif/Semantic-Segmentation-Suite  

https://github.com/GeorgeSeif/Semantic-Segmentation-Suite
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6 Methodology 

This chapter presents the successive steps that led to the semantic segmentation 

of two remote sensing datasets, and to the comparison of the results obtained 

with the U-Net and SegNet inspired models. An explanation on why these 

datasets have been chosen and how they have been built, as well as a 

description and a statistical exploration will be provided. In order to preprocess 

the data before feeding them as in input to a CNN, it is important to understand 

the various requirements that such method can have. The needs and limits of the 

algorithm will therefore be identified, and the preprocessing steps will be 

described. 

 

There is a recurrent process that can be highlighted in the literature about ANN 

in practice. After preprocessing the dataset, this one is divided into three subsets. 

The first subset and the most important one contains the training data, which the 

CNN will learn from. The second subset is for validation and is used for assessing 

the accuracy and the error at defined intervals during the training. The last subset 

is useful after the training, for testing the model with data that has never been 

processed by the CNN. It allows to perform the final evaluation of accuracy and 

cost of the model. 

 

6.1  Data 

Data acquisition is the very first stage of the analysis and very important as the 

entire process depends on the reliability of the datasets. The Vaihingen dataset 

and the homemade OFS – Mos25 data have been selected for this project. It is 

essential to train the neural network with reliable, abundant and representative 

labelled data. Unfortunately, this kind of dataset can be costly, especially for high 

resolution satellite imagery. The selection of the first data for this experiment, the 

Vaihingen dataset, is based on its open source availability and its generalized 

use in the research community for semantic segmentation. The second dataset 

was built with the help of files that are not free of costs but were still used for this 

project as they are available for students in the GIS servers of the University of 

Lausanne for research purpose. 
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6.1.1 Vaihingen datasets 
The first dataset is the Vaihingen dataset. It was initially created and made 

available to a few research groups from the International Society for 

Photogrammetry and Remote Sensing (ISPRS) for a semantic segmentation 

challenge organized in 2014: the "ISPRS Semantic Labeling Contest" of the 

ISPRS Working Group II/49. It was created for researchers to experiment 

semantic segmentation on a unique dataset at an international scale, thus 

allowing a meaningful comparison between the classification accuracies 

obtained by various architectures of convolutional neural networks designed by 

different groups. Since summer 2017, the dataset is available open source on 

internet10, which is quite convenient in the context of the present experiment. 

 

Figure 12 

                                                           
9 ISPRS Working Group II/4 web page : http://www2.isprs.org/commissions/comm2/wg4.html  
10 The Vaihingen dataset set was provided by the German Society for Photogrammetry, Remote Sensing 
and Geoinformation (DGPF) [Cramer, 2010]: http://www.ifp.uni-stuttgart.de/dgpf/DKEP-Allg.html. 

Vaihingen dataset samples 

Aerial 

images 

Ground 

truth 

images 

http://www2.isprs.org/commissions/comm2/wg4.html
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Vaihingen is a small city in the south-west of Germany, located northwest of 

Stuttgart. The population is estimated at 29’041 in 2016 with a density of 

395.7/𝑘𝑚², according to the Baden-Württemberg Statistics11. The territory is 

mainly urban, with usual variations in the density when going from central to sub-

urban areas. 

 

The dataset consists of 16 colour-infrared (CIR) aerial images of various sizes 

going from 2’336 ∗ 1’281 to 2’818 ∗ 2’558 pixels. The resolution is of 9 cm pixels 

per pixel. Corresponding ground truth images are provided and divides the 

territory into 6 distinctive semantic classes: “Buildings”, “Impervious Surfaces”, 

“cars”, “low vegetation”, “Tree”, and ”Clutter/Background”. Four examples 

showing various characteristics of the territory are given in Figure 12. As this data 

has been captured at a high resolution, shapes are generally homogeneous and 

simple, with clear boundaries. 

 

The “Clutter / Background” class gathers all the elements that are usually not 

interesting in the urban context for semantic segmentation. This class is not well 

represented in the dataset and may obtain poor classification accuracies. Figure 

12 also shows the proportions of pixels for each class in the whole set of ground 

truth images. It is clear that some classes like “Buildings” and “Impervious 

surfaces” (mostly roads), “Trees” and “Low vegetation” are largely more 

represented than others as they totalize 98.12% of the pixels. This will have an 

impact on the training of the network in terms of accuracy. 

 

6.1.1.1 Pre-processing 

The data needs to be pre-processed in order to meet the input prerequisites of 

the CNN algorithm as suggested in the Semantic Segmentation Suite. In the first 

instance, the raw aerial images and their associated ground truth from the 

Vaihingen dataset had to be cropped to smaller patches of equal size. In order 

to test the responsiveness of the neural network to the size and scale of the input 

data, two different cropping sizes have been retained and both will be used to 

                                                           
11 Sources: Statistisches Landesamt Baden-Württemberg, Vaihingen, 2016, https://www.statistik-
bw.de/BevoelkGebiet/Bevoelkerung/99025010.tab?R=GS118073   

https://www.statistik-bw.de/BevoelkGebiet/Bevoelkerung/99025010.tab?R=GS118073
https://www.statistik-bw.de/BevoelkGebiet/Bevoelkerung/99025010.tab?R=GS118073
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produce distinct datasets for separate training sessions. As the patches need to 

be square shaped and all of the same size, some pixels in the right and bottom 

boundaries of the raw images have been omitted.  Figure 13 shows the number 

of patches as well as the aspects that they have when cropped with the selected 

sizes. 

 

Figure 13 

Compared to other major and popular sources of data like MNIST12 or CamVid13, 

the Vaihingen dataset can be considered rather small and it can be expected that 

the overall accuracy will not be able to reach as good levels. For training, 

validation and testing, these patches have to be subdivided into three sets. This 

                                                           
12 Available at http://yann.lecun.com/exdb/mnist/  
13Available at http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/  
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http://yann.lecun.com/exdb/mnist/
http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
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is usually done in a random manner, but making sure that all ground truth classes 

are represented in each subset. The proportions that each subset should have 

can be discussed, but it is generally considered that small datasets should allow 

at least 80% for training, then sharing the 20% left for validation and for testing. 

These are the retained ratios in the context of this experiment. 

 

6.1.2 OFS - Mos25 datasets 
The second dataset has been built with data from two different sources, 

specifically for this project. With a view to identify the sensibility of the CNN to 

different scales, this dataset covers their entire territory of Switzerland at a 

resolution of 25 meters per pixel. The preparation of this dataset involves two 

different files. The first one is a satellite RGB “Landsat Mosaik” image (Figure 14) 

of Switzerland of size 17’500 ∗ 12’000, with a resolution 25 meters per pixel, 

captured by the American satellite Landsat 5 between 1990 and 199414.  

 

Figure 14 

The second one is a raw CSV table (Figure 15, left) that specifies for a given pair 

of coordinates different precision levels of semantic class, representing the most 

frequent land cover of the surrounding hectare. This data has been captured by 

the Federal office of statistics of Switzerland (OFS) for the year 200415, which is 

not the same year as the first file. It is however assumed for this project that land 

cover of the Swiss territory has not significantly evolved during that period. Three 

levels of precision are proposed in the table. The most abstracted level contains 

                                                           
14 Satellite Image: © ESA / Eurimage / Swisstopo, NPOC 
15 Statistiques de la superficie : © 2004 Office fédéral de la statistique, Neuchâtel 

Mos25 file 
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three classes. The second level subdivides these three into 10, and the last one 

subdivides the 10 into 27. The second level with 10 classes is the one that has 

been selected for this project, and contains the following labels: “Buildings”, 

“Transports”, “Special infrastructures”, “Green spaces” (in urban environment), 

“Arboriculture”, “Fields”, “Pastures”, “Forest”, “Lakes & rivers”, and “Unproductive 

surface”. 

 

Figure 15 

In order to have labelled pixels that suits as a ground truth image, a raster map 

(Figure 15, right) has been created from the CSV file thanks to an open source 

GIS software16, then calibrated to the resolution of the satellite image. This 

means that one ground truth pixel is subdivided into 16 labelled pixels that are 

associated to 16 pixels of the satellite image. As the ground truth image was 

initially at a lower resolution than the satellite one, it is expected that the precision 

of the learning might be affected, as wrong labels can be assigned to some pixels 

of the satellite image. This dataset is however a way to assess the performances 

of CNN on remote sensing imagery at different scale 

                                                           
16 QGIS, open source GIS software available at https://www.qgis.org/en/site/  

OFS file 

https://www.qgis.org/en/site/
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Switzerland’s territory can be segregated into 3 main parts. The larger one covers 

the Alps in the south and southeast of the country. The second one is a band 

going from southwest to northeast, called the Swiss “Plateau”. This part is where 

most of the urban settlements are located, as it is the flat part of Switzerland. The 

remaining part is the Jura, slightly mountainous too, in the northwest. These three 

regions can easily be identified when looking at the map in Figure 15. The pixel 

ratio for each class is also presented in Figure 15. Amongst the 10 classes, 4 are 

more represented and totalize 86.78% of the pixels. This lack of balance needs 

to be considered later when assessing the results of the semantic classification.  

 

6.1.2.1  Pre-processing 

The pre-processing steps applied to this data are the same as the one applied to 

Vaihingen dataset: cropping the satellite and ground truth images into patches of 

two different sizes in order to obtain two distinct datasets (Figure 16). 

 

Figure 16 
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As the resolution is here very low, the ground truth patches have pixelated 

patterns, with very isolated labels here and there and a generally scattered 

distribution for most classes. Because the ground truth is here available only for 

the territory of Switzerland, square patches had to be cropped inside in a manner 

that no pixels are located outside the boundaries of the country. This means that 

most pixels that are close to the limits are not part of the dataset in its final form. 

As well as for the first dataset, 80% of the patches are randomly selected for the 

training and the remaining for validation and testing. 

 

6.2 Training the models 

The Semantic Segmentation Suite allows the training of different CNN models 

with the exact same shaped datasets. Two distinct CNN architectures have been 

selected for comparison. Table 1 lists all the trainings that have been made with 

the Vaihingen and OFS-Mos25 datasets. In the same table, an ID is associated 

to each training, and will be used when a particular training needs to be referred 

in the accuracy results table. As already mentioned the experiment has been 

conducted with two different patch sizes. As both datasets can be considered 

rather small compared to others that are not related to remote sensing, all the 

models have been train once with image augmentation and once without. Image 

augmentation is a technique that allows to create more data from the original 

data. For example, one can take all the digital images from a dataset and rotate 

them in various angles, zoom in a region, operate a horizontal or vertical 

symmetry, change the lighting or contrasts,  and also use combination of all these 

to produce more data for the network to learn from. The new information 

generated is not redundant as these transformations can be associated to real 

life conditions when observing an object, and this works for remote sensing 

similarly. All the possible combinations give a total of 16 distinct trainings that will 

be compared. 

 

Some hyperparameters have to be set before launching any training. First, the 

batch size defines the number of training example that are fed at the same time 

to the network before it performs an adjustment of the weights. Usually, the 

bigger the batch, the faster the network, but the more memory is required. A 
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batch of size 1 has been selected here as the number of training example is 

rather small, and the size of each example is rather big. The other 

hyperparameter is the number of epochs to be done. An epoch means that the 

entire set of training examples have gone through the network once. Here, 300 

epochs will be performed for a training. For the SegNet architecture, a dropout of 

0.5 is set during the encoder stage. There is no dropout in the decoder part, nor 

in the U-Net model. SegNet model has 34’968’134 parameters to adjust while 

Mobile U-Net has 8’872’262.  

 

List of trainings 

Vaihingen dataset   Training ID 

512*512 patches 

Mobile 
U-Net 

Non-augmented VAI_512_UNet_NA 

Augmented VAI_512_UNet_A 

SegNet 
Non-augmented VAI_512_Seg_NA 

Augmented VAI_512_Seg_A 

768*768 patches 

Mobile 
U-Net 

Non-augmented VAI_768_UNet_NA 

Augmented VAI_768_UNet_A 

SegNet 
Non-augmented VAI_768_Seg_NA 

Augmented VAI_768_Seg_A 

OFS - Mos25 dataset     

512*512 patches 

Mobile 
U-Net 

Non-augmented SUI_512_UNet_NA 

Augmented SUI_512_UNet_A 

SegNet 
Non-augmented SUI_512_Seg_NA 

Augmented SUI_512_Seg_A 

768*768 patches 

Mobile 
U-Net 

Non-augmented SUI_768_UNet_NA 

Augmented SUI_768_UNet_A 

SegNet 
Non-augmented SUI_768_Seg_NA 

Augmented SUI_768_Seg_A 

Table 1 

During the training, a validation is performed after each epoch to evaluate the 

overall accuracy and error function. When completed, a prediction is done to 

evaluate the accuracy of the semantic classification on the 10% data saved for 

the test. This allows to see if the model is not over fitted and able to generalize 
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well with content that has never been seen. A graph showing the evolution of the 

overall accuracy and another one showing the total cost is then generated for 

each epoch. In the results chapter, a comparison table helps to visualize the 

differences in the training accuracies and the semantic segmentation outputs.  
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7 Results 

Results of the 16 trainings (Table 1) are presented in the form of 4 figures, each 

corresponding to one of the datasets. Each figure shows the predictions for 3 

samples with different territory characteristics. For one sample, original image 

input, ground truth image, and prediction results for both models are shown, once 

with data augmentation, once without. For better readability and visualization, 

accuracies for each trainings are presented in a separate table (Table 2, Table 

3). Training took between 8 and 8.30 hours for U-Net architecture and between 

5.30 and 6.30 for SegNet. All the accuracy and loss graphics related to validation 

during the trainings can be consulted in Annex 1. Although U-Net takes longer 

for the training process, it is much faster when making predictions on the test 

data, with about 1 second of calculation per image. SegNet requires a little more, 

with about 1.2 second per prediction.  

 

7.1 Visual assessment 

As the evaluated accuracy of a model does not consider the visual aspects, it is 

first necessary to make a visual assessment of the predicted outputs in order to 

highlight the pros and cons of each models for a given dataset. 

 

7.1.1 Vaihingen – 512 ∗ 512 patches  
Figure 17 shows the results for the Vaihingen 512 ∗ 512 patches. The first test 

sample is a low residential area with low density. For both Mobile U-Net and 

SegNet models, outputs seem better when image augmentation as less “rings” 

appear in the other segmented regions. “Buildings” and “Trees” classes seem 

however to be well identified by the 4 models. The SegNet with augmented 

dataset output gives the most interesting result visually, with homogeneous 

regions and smooth segmentations between these. The few mistakes that can 

be identified are actually understandable in the sense that a human eye could do 

a similar classification. For instance, one of the alleys that goes from the road to 

one of the houses has the ground truth label “Low vegetation” which seems to be 

an over-simplification that the CNN does not make. The Mobile U-Net without 

image augmentation gives the worse result, with many rings of road class 

appearing within buildings or vegetation classes. 
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 Figure 17 – Results for Vaihingen 512*512 patches. 
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The second sample image shows more road surface and cars. Again, the results 

seem smoother when image augmentation is used. SegNet seem to identify cars 

more easily, even if no model is able to detect all of them. It can be noted that all 

the models easily deal with the trees’ shadow that are particularly present in this 

sample. 

 

The third sample is more rural, with a high presence of the “Low vegetation” class. 

The models have a hard time to differentiate the “Low vegetation” and “Trees” 

classes, especially for the vineyards looking cultures that are located on the top 

right of the input image. Mobile U-Net largely mixes-up the “Impervious surface” 

class with the “Low vegetation”. This time, it is the SegNet with non-augmented 

data that seems to give the best output.  

 

7.1.2 Vaihingen – 768 ∗ 768 patches 
Prediction samples for the Vaihingen patches of size 768 ∗ 768 are presented in 

Figure 18. The first sample shows a dense urban environment, with multiple 

buildings that are surrounded by vegetation, and orthogonally arranged roads. A 

few cars are also present. All the models provide a visually good output. Non-

usage of image augmentation causes more scattered segmentations. It seems 

that the models are not able to reproduce sharp and thin shapes that appear in 

the ground truth images. The roof in the middle of the image has a similar texture 

to the road that is adjacent and is therefore never well separated from it. The 

SegNet with augmented data is the most precise in terms of car recognition. 

 

The second sample has been selected to show how badly all the models perform 

with the “Clutter / background” class. None of the trainings were able to determine 

correctly its presence. This class is combination of semantically different objects 

(rivers, sport turfs, containers…) and it looks like the CNN do not know what to 

do with these pixels. This can obviously be attributed the very low number of 

pixels that represent this class in the dataset, and image augmentation 

techniques does not seem to be of any help in this situation. Only low vegetation 

and tree classes respectively seems to perform well. 
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Figure 18 – Results for Vaihingen 768*768 patches. 
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The third sample shows a low density housing area. Besides the usual smooth 

and homogeneous segmentation results that provides image augmentation for 

both models, all the models achieve rather good predictions. Some spots are 

always misclassified with the “Buildings” label, but these pixels actually turn out 

to have similar texture and color. For this example, Mobile U-Net with image 

augmentation gives the best looking output. 

 

7.1.3 OFS-Mos25 – 512 ∗ 512 patches 
Test outputs for the patches of size 512 ∗ 512 made from the OFS-Mos25 dataset 

are presented in Figure 19. The first noticeable phenomenon on every samples 

is that image augmentation causes a smoothing of the segmentation, and many 

classes like “Transports”, “Special infrastructures” and “Green spaces” that 

should appear are simply wiped out by other more frequent classes like the 

“fields” and “forests”.  

 

The first sample is the urban and periurban region of Arbon, along the Constance 

Lake, located in the northeast of the country. The predictions of the non-

augmented SegNet and Mobile U-Net architectures look close to the ground truth 

image, as more isolated labels like the “Arboriculture” are predicted amongst 

more common ones. All the models make the same mistake in a particular sport 

of the lake, where lighter green shades in the water take over the dark blue and 

are labelled as “Forests”. Visually, the SegNet architecture without augmentation 

of the training data seems to give the best output. 

 

The second sample is located in the surrounding of the small city of Moutier, in 

the Jura region. Mobile U-Net without image augmentation tends to misclassify 

“pastures” and “forests” with the “fields” label. Urban settlement is also well 

identified, as for the SegNet one. Non-augmented SegNet seems again to 

provide the best looking output. 

 

The last sample patch shows a mountainous region that is located near the 

village of Andermatt, in the Alps. Besides the over simplified results caused by 

the image augmentation, all the models successfully identify the gross regions 
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Figure 19 
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that have to be segmented. With slightly more precision, SegNet without image 

augmentation provides the best predictions. 

 

7.1.4 OFS-Mos25 – 768 ∗ 768 patches 
This last result figure (Figure 20) is dedicated to the prediction outputs obtained 

after training the CNNs with the 768 ∗ 768 OFS-Mos25 patches. As per the 

previous predictions for the 512 ∗ 512 patches, augmented dataset causes 

homogeneous segmentations and labels with low frequency are completely 

ignored by the CNNs.  

 

The first sample shows an urban and rural environment in the south of Zurich. A 

bit of Zurich Lake appears as well as Zoug’s Lake on the bottom part. The results 

are globally good, with a higher precision in the shapes achieved by the SegNet 

model. The lakes are well delimited too. Both architectures however seem to 

have a hard time recognizing small and thin features like the roads and rivers 

that get included in other classes that are surrounds them. 

 

The second test sample gathers urban, rural, and mountainous characteristics, 

which are located near Einsiedeln. The four predictions give very distinctive 

results and both models make their own classification mistakes. Sihl Lake, on the 

top of the patch, is only detected by the SegNet model with non-augmented 

training and the Mobile U-Net with augmented data. Mobile U-Net with no 

augmentation performs very bad, labelling the majority of the patch with 

“Unproductive surfaces”. Non-Augmented SegNet output looks slightly better but 

misclassifies a rather big spot in a mountainous region as “Buildings”. This patch 

gave a hard time to each model and none can be eligible as a better option than 

the others. 

 

The last sample evaluated in this visual assessment is a more mountainous 

region in the Alps. Predictions are globally looking good, with the usual slightly 

better precision for the SegNet in the identification of buildings and other less 

frequent classes.  
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Figure 20 
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7.2 Models accuracy 

Accuracy values based on the predictions made on the test datasets have been 

computed. Table 2 shows the average overall accuracy and the average class 

accuracy for each training with the Vaihingen dataset. In a similar way, table 3 

shows the accuracy results for the models trained with the OFS-Mos25 dataset.  

For each column, minimum values are highlighted in red and maximum values in 

blue.  

 

7.2.1 Vaihingen datasets 
The best overall accuracy on the Vaihingen dataset is obtained with 82.53% by 

the SegNet architecture without image augmentation and with 768 ∗ 768 patches. 

The worse overall accuracy is for the Mobile U-Net on the non-augmented 

Vaihingen small patches dataset, reaching only 72.37%. When looking at the 

accuracy values for each class (Table 2), SegNet is more often attributed with 

the highest accuracy values than Mobile U-Net, and U-Net obtains most of the 

lowest values. The usage of 768 ∗ 768 patches over the 512 ∗ 512 ones gave a 

better accuracy on the “Impervious surface” class objects which represent the 

majority of pixels in the dataset, as well as for the “Low vegetation” class. This 

has for effect to push the overall accuracy up. In general, buildings and trees 

accuracies are higher with the smaller patches. The usage of image 

augmentation does not appear to be of any help as it can perform as many high 

accuracies as bad ones depending on the class. 

 

The class that generally obtains the best accuracy is the “Building” class, with an 

average of about 91% between all the models. The “Clutter / background” class 

is the least represented class within the dataset and is not well predicted by the 

models, but scores high values of accuracy. This happens because the algorithm 

that computes the accuracies give a value of 100% to the classes that are not 

present in the test input images. This is often the case for this class that has a 

very heterogeneous spatial distribution in the images. The impact of this 

imprecision is minimal as this class has a minimal weight in the overall accuracy.  

The lowest accuracy is for the “Cars” class, with an average of about 52%. This 

can be expected as it represents only 1.21% of the dataset’s pixels. 
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7.2.2 OFS-Mos25 datasets 
For the OFS-Mos25 datasets, best overall accuracy is delivered by the SegNet 

model with image augmentation and patches of 512 ∗ 512 pixels, with 70.05%. 

The lowest overall accuracy is of 51.27% and is obtained by the Mobile U-Net on 

the 768 ∗ 768 patches without image augmentation. The overall accuracy 

reaches better levels when training the CNNs with smaller patches. This is 

relevant as well when going through each class, except for the “Lakes & rivers” 

that seems to behave better with 768 ∗ 768 patches. In general, SegNet performs 

better than Mobile U-Net as it totalizes more of the highest accuracies and less 

of the lowest amongst the classes. 

 

“Forests” and “Fields” classes score the best with respectively 72.9% and 65.65% 

average accuracy between all the models. “Transport”, “Special infrastructure” 

and “Green spaces” obtains the lowest accuracies. They systematically obtain a 

value of 0% when image augmentation is used, because the models operate a 

smoothing that incorporates them in other predominant classes like “Fields”, 

“Pastures” and “Forests”. This happens in the advantage of all the other classes 

that see their respective accuracy levels increase by a few percent. 
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8 Discussion 

This chapter comes back on the initial hypothesis of this project and tries to 

answer the underlying questions in view of the results obtained with the different 

training settings. For the Vaihingen dataset, 768 ∗ 768 patches and SegNet 

without image augmentation was probably be the best alternative in this context. 

On the other hand, the highest accuracy for the OFS-Mos25 dataset was 

obtained with the augmented 512 ∗ 512 patches and the SegNet architecture 

again. This model seems to be more interesting in terms of accuracy for semantic 

segmentation on both low and high resolution satellite data. 

 

In comparison with the overall accuracies that have been achieved by the 

participants of the “Vaihingen: 2D Labelling challenge”17, an accuracy of 82.53% 

on the Vaihingen dataset is an interesting result considering the SegNet 

architecture that was not specifically designed for this kind of task. However, 

results obtained with the OFS-Mos25 did not reach satisfactory accuracies, 

possibly because the dataset is “crafted” with different sources from different 

years. When comparing the accuracy graphics in Annex 1, it is noticeable that e 

validation accuracy values for each non-augmented data trainings has a 

tendency to decline after about 100 epochs. This could be associated to an over-

fitting of the model to the training data. The usage of image augmentation seems 

to counter this problem but the learning becomes slower and there is more 

variance in the accuracy. It can however potentially be interesting to develop an 

architecture dedicated to low resolution satellite imagery, as long as adequate 

training data is available. This could make a systematic and automated 

application possible for semantic segmentation of low resolution remote sensing 

data as modifications of the land cover at such scale are not significant in long 

time lapses. 

 

The main issues for both datasets remain in the fact that training data should be 

more abundant and more balanced in terms of classes. The other problem that 

                                                           
17 140 valid participations, with accuracies going from 78.4% to 91.6%, average of 88.23%. Full results 
table is available at http://www2.isprs.org/commissions/comm2/wg4/vaihingen-2d-semantic-labeling-
contest.html  

http://www2.isprs.org/commissions/comm2/wg4/vaihingen-2d-semantic-labeling-contest.html
http://www2.isprs.org/commissions/comm2/wg4/vaihingen-2d-semantic-labeling-contest.html
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was observed in the case of the Vaihingen dataset is that some shapes 

appearing in the ground truth images were over-simplified and CNNs tended to 

be closer to reality for smaller shapes, like small alleys going from roads to 

houses. 

 

 It has been observed in the various experiments that CNNs encounter difficulties 

to reproduce the sharp shapes of human built structures. Until another solution 

is found, this kind of issue could possibly be corrected with post-processing 

methods as suggested in many papers (Badrinarayanan, Kendall, & Cipolla, 

2017; Chen, Papandreou, Kokkinos, Murphy, & Yuille, 2016; Pinheiro & 

Collobert, 2015; Yao, Poleswki, & Krzystek, 2016). It is however possible for CNN 

to reach high accuracy levels without post-processing (Long, Shelhamer, & 

Darrell, 2015; Volpi & Tuia, 2016), which is always more interesting in terms of 

data processing efficiency.  

 

When looking at the test image outputs of each model and evaluating them with 

a human perception, the shapes of the segmented regions looked globally more 

natural on the Vaihingen dataset when using image augmentation techniques. 

These were however not helpful in most situations in terms of accuracy. This can 

probably be related to the specificities of the data augmentation algorithm of the 

Semantic Segmentation Suite, which could be adjusted specifically for 

processing remote sensing data. It may also come from a problem of poor 

balancing of the classes in both datasets. In such situation, the usage of class 

balancing method as the median class balancing suggested in the SegNet paper 

(Badrinarayanan, Kendall, & Cipolla, 2015) should be helpful, but was not fully 

integrated in the Semantic Segmentation Suite yet.  

 

For CNN that are intended to a particular application, duration of training does 

not matter much if the model can be used afterwards for predictions over a long 

period of time. However, the time required to make predictions once the model is 

trained can be a more critical aspect depending on the purpose of the potential 

applications. Mobile U-Net seems faster in that sense, but clearly achieves lower 

accuracies. In the context of remote sensing and more specifically land cover 

classifications, the phenomena that are studied do not necessarily require a real 
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time analysis. This means that the development of deeper and heavier CNN 

should be an interesting option with the advent of new generation GPU or TPU, 

as long as over-fitting does not become an issue. 

 

Scale seems to have an important influence as well for semantic segmentation 

with CNN. In the case of the OFS-Mos25 dataset, the shape that the CNNs need 

to recognize are more heterogeneous, and the precision of the predictions that 

needs to be achieved is higher. For low resolution remotely sensed imagery, the 

pixels are always a mixture of several semantic land cover objects and despite 

all the training that can be performed, the choice of the good label is not an 

evidence for a CNN, nor for a human eye. This issue of spatial precision would 

probably not be as much of a handicap if the up-sampling method with indices 

was available in the Semantic Segmentation Suite and in general in deep 

learning frameworks for the SegNet architecture. 

 

The number of examples for training of the CNNs matters a lot in the context of 

CNN. Compared to the Vaihingen dataset, the OFS-Mos25 dataset has 15% less 

pixels that the models can learn from. Also, it has more classes that have to share 

these pixels. This is without a doubt an element that could explain the large 

difference in the accuracy obtained between the two datasets. With CNN and 

ANN in general, the ability for the model to build a bank of features that helps 

creating the network’s low and high level representations are always highly 

dependent on the quality of the datasets, in terms of quantity of data, balance 

between the classes and quality of the ground truth. This raises the question of 

the limits of ANN regarding remote sensing data. Each territory has its own 

characteristics and data capture conditions, which also change with time. CNN 

architectures that are dedicated to remote sensing imagery should be easily 

upgradable, and able to properly learn these variances in the data. This could be 

possible for instance with fine-tuning of the parameters over time.  

 

In summary and in the attempt to give a proper answer to the research question 

of this project, CNNs are adapted tools that can efficiently provide accurate 

semantic segmentation of remote sensing data. The perspectives for an 

automated process are also very promising. Reservations can however be made 
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regarding the multi-scale aspect. The two models that were tested seem to have 

more difficulties with the low resolution dataset. They could possibly be adapted 

for better predictions, essentially if they can be provided with larger dataset of 

better quality. The challenge for more accuracy is in both data acquisition and 

model architecture. For decision oriented applications, a transition to CNN for 

semantic segmentation of remotely sensed data should slowly begin and have a 

bright future, in the same way that ANN have progressively replaced traditional 

machine learning algorithm in many computer vision web based applications.  
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9 Conclusion 

The objective of this experiment was to evaluate how the usage of CNN could 

achieve highly accurate semantic segmentation of remote sensing data of 

different geographical scales. The results of the experiments that have been 

conducted within this project may show that there are no unique solution in terms 

of CNN architecture for this particular task. Each training that has been 

experimented produced models that can accomplish better results that depend 

on the datasets, the pre-processing method, or even particular semantic classes. 

Added to this, the visual aspect of the test outputs did not always reflect the actual 

accuracy achieved by the models.  

  

The tool used for training the models, the Semantic Segmentation Suite, is still 

under development. The ideas behind its conception are user-friendly oriented, 

with a very readable and customizable code. Even if such open source projects 

are not always perfect for research purpose, the enthusiastic community slowly 

makes very promising contributions towards easier experimental usage of ANN. 

Progresses are also quickly made in the different deep learning platforms and 

frameworks, which creates a positive dynamic. 

 

CNNs are still new in the field of remote sensing and spatial analysis and are 

currently an active subject of research. As recognized state-of-art method for 

image recognition and computer vision in general, CNNs probably still have to 

show better results for semantic segmentation of remote sensing data in order to 

be trusted as a tool for decision oriented applications. Acquiring adapted pixel-

level labelled data for an efficient training is also a tough task that requires time, 

money and most of all strictly respected processes. This would however be worth 

the investments when considering all the potential applications. 

 

The future contributions of CNNs in remote sensing high resolution data semantic 

segmentation and analysis could be of many forms and could be useful to various 

fields of today’s geography. From the environmental change detection to 

automated statistics about land use in short time intervals, the scope of 

application is wide. In Switzerland, the analysis of such data is done over a period 
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of about 5 years. Considering today’s abundance of digital imagery that are 

captured daily by the numerous satellites orbiting around Earth and with always 

higher resolution, CNNs could allow more frequent and automated analysis of 

the territory and therefore a more reasonable and responsible usage of the land. 

 

It would be interesting for future works on semantic segmentation with CNN and 

remote sensing data to test different settings of image augmentation. It could also 

be interesting to investigate the possibility to create a larger and more balanced 

dataset. The development of a dedicated architecture for remote sensing data, 

with adapted convolution filters trained to detect the key features of the data and 

with convenient options for fine-tuning over time could be a major step towards 

generalization of CNN in public or private institutions. 
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11 Annexes 

11.1  Annex 1 – Accuracy and loss graphics 
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