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Abstract

Tracing and counting pedestrians is a growing area of interest in spatial analysis in
the current context of fast growing and denser urban spaces. This research is part
of this trend and presents an automated method that facilitates the extraction and
analysis of pedestrian data from cameras for decision-support purposes in the field
of spatial planning. There are two main focuses to this research: the first focuses on
the extraction methods, which are tested by various combinations of algorithms and
their associated parameters (detection threshold and tracking memory). The sec-
ond assesses the reliability of these results by comparing algorithms and analysing
raw images to validate these observations. The resulting optimised pipeline via the
identification of algorithms, parameters and external factors improving pedestrian
data extraction.

Keywords : Pedestrian counting, pedestrian detection, pedestrian tracking,
machine learning, spatial planning

Résumé

Le suivi et le comptage des piétons est un domaine d’intérêt croissant en analyse
spatiale dans le contexte actuel de croissance rapide et de densification des espaces
urbains. Cette recherche s’inscrit dans cette tendance et présente une méthode au-
tomatisée qui facilite l’extraction et l’analyse des données sur les piétons à partir
de caméras à des fins d’aide à la décision dans le domaine de la planification terri-
toriale. Cette recherche s’articule autour de deux axes principaux : le premier se
concentre sur les méthodes d’extraction, qui sont testées par diverses combinaisons
d’algorithmes et leurs paramètres associés (seuil de détection et mémoire de suivi).
Le deuxième évalue la fiabilité de ces résultats par comparaison entre algorithmes
et analyse des images brutes pour valider ces observations. Il en résulte un pro-
cessus optimisé via l’identification des algorithmes, paramètres et facteurs externes
améliorant l’extraction de données piétonnes.

Mots-clés : Comptage de piétons, détection de piétons, suivi de piétons,
apprentissage automatique, planification territoriale
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Chapter 1

Introduction

1.1 Motivation and objectives

In the rapidly expanding landscape of urban environments, understanding the dy-
namics of pedestrian behaviour has become a critical issue for city planners and
management. As cities continue to grow and addressing the majority of the world’s
population, accommodating the needs and behaviours of their inhabitants become
imperative to ensure equitable access to the opportunities within these spaces. The
United Nations (UN) identify four demographic megatrends exerting a profound
influence on the demand for pedestrian-friendly urban areas. They are urbanisa-
tion, migration, population ageing and growth. Understanding and harnessing those
trends is essential in order to create cities that are not only safer and more efficient
but also sustainable in the long term (United Nations, 2022).

The first demographic megatrend is urbanisation. This socio-economic process
can be observed across the globe by transforming former rural areas into urban
ones and also shifting the spatial distribution of population from rural settlements
to cities. This also includes significant shifts in occupational, cultural, lifestyle
and general patterns. Thereby changing the traditional demographic and social
structures of those spaces (Montgomery et al., 2013). This influx of people tends
to create megacities and places immense pressure on city planners to design spaces
capable of accommodating not only the rising population but also the multitude of
transport flows navigating these urban areas.

The second demographic megatrend englobes all the implications related to mi-
gration. People are invariably drawn to urban settings by the promise of improved
living conditions, ranging from enhanced professional opportunities to better access
to healthcare and education. This attraction coupled with urbanisation translates
into the emergence of megacities as major hubs of population and economic activi-
ties. This further explains the rise of urban dwellers and the need for good transport
management.

The third demographic megatrend is the population ageing. This has far-reaching
implications for the demand on high quality pedestrian infrastructure. It is neces-
sary to take into account the special requirements for each age group in order to
guarantee a safe and comfortable walking experience (actif-trafiC, 2022). This is
done in order to ensure a fair access to urban facilities.
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Lastly is the population growth. Even though the population growth is slower
than in the 1950s. According to the United Nations Population Prospects 2019, the
world population will reach 8.5 billion in 2030, 9.7 billion in 2050 and 10.7 billion
in 2100. The slowing growth rate is mostly related to lowering rates of fertility
and mortality. With the rising population and a predicted higher proportion of
them living in urban environments (two-thirds by 2050), it is vital for cities to make
accurate planning decisions.

In the centre of the 2030 agenda for sustainable development are seventeen de-
velopment goals that were approved by all the members of the United Nations. The
eleventh goal of the Sustainable Development Goals (SGDs) states that : «Making
cities sustainable means creating career and business opportunities, safe and afford-
able housing, and building resilient societies and economies. It involves investment
in public transport, creating green public spaces, and improving urban planning and
management in participatory and inclusive ways» (United Nations, 2023). Sustain-
able transportation is one way of ensuring equal access to the benefits of living in
dense urban areas (easier access to education, proximity of health facilities, eco-
nomic opportunities, etc.). Also it can reduce the adverse effects that come with
urbanisation such as urban sprawl, air/noise pollution and a highly congested street
network.

In order to achieve those objectives, it is vital for planners to have access to
reliable and precise data on multiple modes of transport. In the case of motorised
vehicles, traffic impact assessments are mandatory for development review. In the
case of pedestrian traffic, this type of data collection is missing. This study tries to
create a pipeline to easily collect pedestrian data in order to provide useful insights
into pedestrian behaviours and help decision makers in their work.

The demand for this type of data can be seen in multiple contexts. The first
example is in train stations. The Swiss Federal Railways (SBB) have taken the
initiative to standardise their passenger counting method to obtain more precise
data regarding their customers’ movements in train stations in order to enhance
the traveller’s experience and the railroad infrastructure management. Currently
the collected data is limited to entries and exits in the stations which provides
only a rough overview of the passenger movements. To more effectively respond to
customer needs and optimise space planning in rail stations, it is necessary to go
beyond such basic figures. The goal of their new system is to collect detailed data
on the transit, stop and gathering areas for different types of customers. This can
lead to a better planning of services, improvements to accessibility and ensuring a
safe and pleasant travel experience for all travellers (SBB, 2023).

Another example of the use of precise data is in natural parks, where it is nec-
essary to assess the potential impact of visitors on regional economy, capacity of
roads, necessary infrastructure and the disturbance of wildlife. Those can only be
estimated by using reliable data as in Rupf et al. (2008). In order to reduce the in-
fluence of the sensors on visitor’s behaviour, they used acoustic slab sensors because
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they are imperceptible and use little energy. This method lead to a high deviation
between manually counted visitors and automatically counted visitors. As such,
it is necessary to find an alternative making it possible to get reliable data in such
contexts where the visitor’s behaviour could be influenced by the presence of sensors
too.

1.2 Research question

The first axis of this thesis centres on the critical task of obtaining reliable pedestrian
data. To achieve this task, there currently exists a wide range of sensors. Bluetooth
technology is utilised, leveraging signals emitted by pedestrians’ devices to track
their presence and movement within a specific area. Movement sensing technology
can be used to capture and interpret the pedestrians’ motion. Mobile signal tracking
is another method of tracking using mobile phone signals to get pedestrian location.
Lastly camera sensors offer a visual approach to pedestrian tracking.

In this study we will focus on cameras. In the contemporary urban landscape,
they have emerged as a promising technology for tracking and monitoring pedestrian
movements in various contexts. This technology offers the potential to capture rich
and precise data, encompassing pedestrian traffic patterns, behaviour, and interac-
tions, which is invaluable for urban planning and management.

Camera sensors, whether in the form of surveillance cameras, advanced imaging
systems, or other sensor technologies, have the capacity to provide a wealth of in-
formation regarding pedestrian activities. Their deployment in urban environments
holds the promise of collecting comprehensive, high-resolution data that can serve
as a foundation for informed decision-making. The first research question would be
: How to obtain reliable pedestrian data using camera sensors ? This axis of the
thesis will delve into the method, techniques, and technologies involved in extracting
pedestrian data using camera sensors.

The second axis of this thesis involves the analysis of the pedestrian data ob-
tained through camera sensors and its subsequent application to specific contexts.
Extracting data is only the initial step; the true value of this information lies in
its analysis and its ability to offer insights and solutions within chosen urban con-
texts. This leads us to the second research question : How to analyse pedestrian
data ? What can it be used for ? Through this axis, the research will focus on the
critical phase of transforming raw data into meaningful information. The analysis
will encompass various aspects, such as pedestrian flow patterns, congestion levels,
safety assessments, and the impact on infrastructure. Furthermore, the thesis will
explore how this analysed data can be applied to diverse settings, including public
transportation hubs, natural parks, and urban centers.

The overarching objective of this thesis is to evaluate the reliability of camera sen-
sors as a means of extracting actionable pedestrian information. This is achieved by
assessing the accuracy, consistency, and completeness of the data acquired through
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these sensors. The combination of these two axes forms a comprehensive framework
to investigate the potential of camera sensors as a valuable tool for enhancing urban
planning, safety, and efficiency in contemporary cities.

By addressing both the acquisition and analysis of pedestrian data, this research
endeavours to contribute to the advancement of pedestrian-focused urban design
and management, while also offering insights into the broader realm of sensor-based
data collection and analysis for urban planning and decision-making.

1.3 Contributions

This thesis mainly contributes to the urban planning and camera sensor data analysis
in the following ways :

• Pedestrian data extraction : this research provides a systematic review
of pedestrian data acquisition and camera sensor technologies in the field of
tracking and counting. By assessing the reliability of those technologies, this
work offers practical insights into the deployment and configuration of camera
sensors to ensure reliable pedestrian data.

• Contextual applications : this work also applies beyond theory and applies
the extracted data to real-world scenarios. By doing so in various settings, it
also shows the practical utility behind extracting data from camera sensors.
It also offers valuable insights for decision-makers.

• Sustainable urban planning : the study aligns with the eleventh goal of
SGD’s in addressing the need for sustainable urban development and efficient
public spaces. It alights the use of reliable pedestrian data in planning pedes-
trian friendly urban infrastructure, reducing congestion, improving safety and
contributing to sustainable planning decisions.

1.4 Expectations

This research encompasses two primary objectives, each of which contributes to our
understanding and practical utilisation of pedestrian data from various sources :

Pedestrian information extraction : The expected results of this thesis are
to obtain relevant information related to pedestrian flows regardless of the source
of the video and and its context. Moreover, it is to provide a simple and repro-
ducible framework for the extraction of pedestrian flows using diverse video sources
(webcams, camera sensors, etc).

Pedestrian information analysis : The analysis of the obtained pedestrian
flows conducted to offer easily interpretable information in order to provide data for
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urban planning decisions. It is expected of this thesis to provide origin destination
flows and give a reliable way to obtain pedestrian data.

1.5 Thesis structure

The following structure will be used to answer these research axes. Section 2 will
be a literature review of the two axes. Section 3 will describe the data and study
sites used for this thesis. Section 4 will review the methodology for the count of
pedestrian and for the analysis. Section 5 will present the different results and
findings. Section 6 will expand on the limits and further improvements. In section
7, the findings will be synthesised.
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Chapter 2

Context and case study

In this section, the state of the art for the two axes of this study will be contextu-
alised. This part was accomplished using Google Scholar and Papers With Code in
order to find relevant previous research.

In the first part, the data collection method will be discussed. As previously
stated by Hollenhorst (1992), this part is often very time-consuming and resource
consuming. It can further be categorised into three main categories : self-counting,
direct-counting and indirect counting methods. This study will focus on indirect
counting methods in the domain of computer vision. Computer vision is a field
of machine learning whose objective is to learn from images and extract useful
information from those images. In a way, its objective is to let a computer see,
observe and understand just like the human eye. For pedestrian tracking, computer
vision studies have mostly separated this problem into three main sub tasks : image
classification, object detection and object tracking. In order to get a simple overview
of the state of the art on this subject, this structure will be used in the following
chapter.

In the second part, we will expand on the multiple studies made on assessing
pedestrian data and how they used such data for effective planning and what in-
dicators are used to make accurate predictions. As such, this section will focus on
the practical implementations and uses of pedestrian data in the field of geotourism,
geomarketing, urban planning and crowd monitoring.

Definitions

• Computer vision : It is a sub-field of Machine Learning whose main objective
is to let machines achieve human-like performance on interpreting and un-
derstanding visual data. In recent years, the main sub tasks associated with
computer vision are the segmentation, classification and detection of objects
in images or videos (Martin, 2020).

• Neural Networks : Also known as Artificial Neural Networks (ANN), they
are inspired by the neural network of the human brain and try to mimic its
function. A basic neural network is composed of an input layer, multiple
hidden layers and an output layer (Géron, 2022).

• Convolutional Neural Networks (CNN) : Similar to ANN’s, the CNN’s emerged
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from the study of the visual cortex of the human brain. These neural networks
take as input an image or video and extract information from that. One
important building block of such neural networks is the convolutional layer.
This layer acts as a filter to extract information by from images (Géron, 2022).

• Image classification: The task of labelling and categorising groups of pixels or
vectors in an image. This is done based on predefined characteristics such as
colours or textural elements (Shinozuka and Mansouri, 2009).

• Object detection: The task of object detection builds upon the classification
results to assign a location and size to the objects of interest (Redmon et al.,
2016).

• Object tracking: A task in computer vision that can be partitioned into locat-
ing objects, re identifying detected objects across frames and calculating the
individual trajectories based on an input video (Luo et al., 2021).

2.1 Pedestrian tracking

This section focuses on the three main sections of a pedestrian data extraction
pipeline. The first section reviews the evolution of the image classification methods,
the second of the object detection methods and the third reviews the literature
around object tracking.

Image classification

Image classification is a crucial step in pedestrian tracking, its main objective is to
identify pedestrians within a scene captured by cameras. Over the years, multiple
methods have been developed in order to accurately complete this task.

In early works on pedestrian tracking, image classification was done using tra-
ditional image processing techniques and by extracting features on each pixel of
the input image. A lot of work was done in order to provide accurate ways of
representation. As such, there is an extensive literature on object classification
as a part of the object detection problem. A few of the relevant articles will be
mentioned here. These articles all were written in response to a growing need for
accurate pedestrian data acquisition using camera sources various industries includ-
ing surveillance, autonomous driving, recognition systems or even market research.
The work of Papageorgiou and Poggio (2000) introduce a general system for object
detection in clustered, free flowing spaces. In order to provide an accurate represen-
tation of pedestrians, the main objective is to have high inter-class variability and
low intra-class variability. To guarantee that, the extracted features for pedestri-
ans must be consistent for every pedestrian and very distinguishable from the other
classes. Their contribution is the use of Haar-like features to help the computer
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detect pedestrians. Those features called Haar Wavelets are the result of the de-
composition of an image into local oriented intensity differences between adjacent
regions. This gives a way to compare complex structures while removing noise and
lets the machine classify the image between objects of interest or not. Dalal and
Triggs (2005) introduce another method called Histograms of Oriented Gradients
(HOG) to classify an image. This method is based on the idea that the appearance
and shape of objects can be described by using local intensity gradients without
knowing their exact position. Their objective is to provide a efficient system. It was
done by following the steps pictured in Fig. 2.1. The HOG’s contrast-normalise the
gradient histograms in order to reduce the impact of illumination, shadowing and
overall noise in the input image.

Figure 2.1: Structure for the image classification using the HOG method (Dalal
and Triggs, 2005)

Yoshinaga et al. (2009) use more traditional image processing techniques in
their paper on people counting. The first is the background subtraction to classify
background pixels from non-background ones ([b] in figure 2.2). This is done using
a Parzen density estimation algorithm. Shadows and elements subject to variations
related to illumination also stay after the first step. As such, the next processing step
is the removal of shadows because it may affect overall performance and results ([c]
in figure 2.2). This method is done by applying a YUV colour filter that identifies
the a shadow as a slight variation of colour of the original object.

Figure 2.2: Segmentation sequence in blob descriptor technique (Yoshinaga et al.,
2009)

Recent advancements have shifted to use convolutional neural networks (CNN’s)
for the image classification step too. One notable contribution is the work by Red-
mon et al. (2016) on the You Only Look Once (YOLO) algorithm. This solution is
a real-time classification and detection algorithm that is still vastly used in various
pedestrian tracking applications. The classification is done by separating the image
into multiple smaller grid cells where each of them is given bounding boxes and
a confidence score. This confidence score represents the trust of the model in the
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presence or absence of an object and how accurate the associated bounding box is.
Similar to CNN’s other approaches such as the sliding window where a classifier is
slid by a regular step over the entire image to predict the class of each pixel (Felzen-
szwalb et al., 2010). Another one like the R-CNN use region proposal methods to
generate potential bounding boxes and then run a classifier on those bounding boxes
(Girshick et al., 2014).

Transfer learning has also played a pivotal role in the advancement of image clas-
sification for pedestrian tracking. In a recent work by Han et al. (2022), pretrained
VGG-16 and Feature Pyramid Network (FPN) were used in order to improve the
accuracy of the classification. This is also done in order to reduce the need for vast
amounts of labelled training data.

A large panel of tools is available for experts to use in order to classify an image.
Each of these methods obtains varying results in terms of accuracy, cost or execution
time. Even then, it is possible to understand that the task of classification is a crucial
one for our study in order to reduce the amount of resources needed by a computer
to identify pedestrians on video images.

Object detection

The second part of pedestrian tracking involves the correct detection of pedestrians
within a given image and video frame. Object detection is a field of computer vision
whose main objective is to detect the boundaries and position of objects in an image
or video. The detection methods have, as with image classification, evolved from
traditional techniques to deep-learning approaches.

Early works were based on traditional image processing techniques. Viola and
Jones (2001) introduce a method using previously classified images and their features
to detect objects of interest. This is done by using multiple classifiers in order to
reduce the number of necessary features needed to find the pedestrians. In the work
of Yoshinaga et al. (2009), object detection is done by extracting features on the
previously classified frames. Once the features match a certain threshold they are
detected to be an object of interest (e.g.: pedestrians).

With the advent and the growing use of deep-learning techniques, multiple break-
throughs in object detection were achieved. According to the Papers with Code
website (“Papers with Code - Object Detection”, 2023), the current state of the art
methods can be classified into two main categories which are :

• One-stage methods like Overfeat, YOLO and SSD

• Two-stage methods such as the Faster R-CNN

One stage methods are called as such because of the pipeline used by the models.
They first hypothesise bounding boxes, then extract pixels or features for each box
and apply a high-quality classifier to detect the objects of interest (Liu et al., 2016).
In most of those models, varying methods are used to extract features from an image
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such as sliding windows or region proposals. Those features are then used to localise
and characterise the objects detected. Sermanet et al. (2014) introduce Overfeat,
an algorithm that applies a Convolutional Neural Network on a sliding window to
execute the classification and detection steps in a single pipeline. As presented
before, YOLO is a one-stage method whose main objective is to look at an image
once and detect objects in the image. It simplifies the detection problem into a
regression one and differs from its sliding window counterparts because it takes the
whole image into account when performing the classification and detection steps
(Fig. 2.3). Single shot Multibox Detector (SSD) (Liu et al., 2016) is a single stage
method that is more accurate than YOLO and almost as accurate as the Faster R-
CNN one. This is partly due to deleting the steps of hypothesising bounding boxes
and resampling features. Also it makes small improvements by adding multiple
filters to perform detection at multiple scales.

Figure 2.3: YOLO model (Redmon et al., 2016)

Two-stage methods have the same first step as their one-stage counterpart but
the second stage often consists of refining the detections to improve the accuracy
and obtain better results. Those methods often come with an increase in the com-
putational cost and the reduction of execution speed. As stated by Liu et al. (2016),
Faster R-CNN has the highest accuracy on state of the art datasets such as PAS-
CAL VOC but they are much slower (7 frames per second) and cannot perform on
real-time video feeds. Faster R-CNN uses a Region Proposal Network (RPN) in the
first step and an R-CNN for the second step.

Object tracking

Lastly, the detected objects are tracked across multiple frames in order to identify
their patterns. This can be understood as a data association task and has been the
subject of a lot of research due to the various challenges brought about by this task
such as occlusion, varying velocities, environment changes (illumination, weather,
etc.) and other abrupt changes.

Traditional approaches like the Kalman filter have been widely used in pedestrian
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tracking. It is an iterative mathematical process that uses a set of equations and
consecutive data inputs to quickly estimate the true value, position, velocity, etc.
of the pedestrian being detected (Kalman, 1960). But those approaches are prone
to errors due to aforementioned challenges. This led to the development of more
sophisticated approaches such as SORT (Bewley et al., 2016) who complemented
the Kalman filter with the Hungarian algorithm to make more optimal decisions.
Or DeepSORT (Wojke et al., 2017) who integrates deep-learning elements in the
tracking process in order to improve accuracy and quality of the tracked pedestrians.
According to Luo et al. (2021), most Multi Object Tracking (MOT) works can be
grouped under two main axes (Fig. 2.1). The first axis is detection-based tracking
(DBT) whose first step is to detect the objects of interest in a sequence of images.
Afterwards, the trajectory hypothesis is extracted and the sequence is linked to
create a trajectory for each object. The second axis is detection-free tracking (DFT),
this approach relies on a manual initialisation of the objects of interest in the first
frame. Its objective is then to locate the objects in the subsequent frames.

DBT DFT
Initialisation automatic, imperfect manual, perfect
n° of objects varying fixed
Applications specific type of objects any type of objects
Advantages can handle varying number of objects free of object detector
Drawbacks performance depends on object detection manual initialisation

Table 2.1: Comparison between DBT and DFT (Luo et al., 2021)

In a recent paper, another approach to the MOT problem has been identified.
The tracking-by-counting approach has been researched as a way to bridge the gap
between counting, detection and multi-object tracking. This was done in order to
answer the need of a reliable tracking model in crowded scenes. As seen in figure
2.4, Ren et al. (2021) propose an improved version of the MOT problem. It is still
based on the same two parts : object detection and data association. But in the case
of their study, they improved the method by incorporating constraints to increase
performance. The first constraint is a count constraint. This constraint is based on
density maps extracted on each frame of the sequence. This leads to more precise
counts in the object detection step. The constraint used for data association is a
flow constraint that is also extracted from the density maps to create a graph that
reduces the movement probabilities of pedestrians to a few hypotheses.

Synthesis of the literature on pedestrian tracking

The integration of those three steps form the backbone of an effective pedestrian
tracking application using webcams. The previously reviewed literature highlights
the significant shift from traditional approaches to deep-learning based ones in recent
years. As the field of computer vision is ever changing and very vast, this chapter is
only a partial glance at the many algorithms and possibilities related to pedestrian

11



Figure 2.4: Tracking by counting (Ren et al., 2021)

tracking using video sources. This study will build upon this foundation to try and
propose a simple pipeline for planners to acquire reliable data using those methods.

2.2 Pedestrian data analysis

In this part, we focus on the practical use cases for pedestrian data and how this
type of data is used in the multiple fields.

Pedestrian data for geomarketing

Pedestrian data plays a pivotal role in enhancing marketing strategies by providing
valuable insights into consumer behaviour and preferences. Retailers and marketers
can utilise this data to analyse foot traffic patterns, understand the flow of people in
various locations and identify popular areas for potential storefronts or advertising
placements (Baviera-Puig et al., 2016). Geomarketing strategies can be further opti-
mised by tailoring promotions based on the demographics and behaviours of pedes-
trians in particular areas, ultimately improving the targeting precision of marketing
efforts. Moreover, pedestrian data aids in site selection for businesses, enabling them
to choose locations that align with their target audience’s habits and preferences.
Overall, the applications of pedestrian data in geomarketing empower businesses to
make informed decisions, enhance customer engagement, and maximise the impact
of their marketing initiatives (CARTO, 2024).

Pedestrian data for geotourism

The applications of pedestrian data in geotourism are extensive and contribute sig-
nificantly to enhancing the overall tourist experience. Pedestrian data allows for
the analysis of visitor movement patterns within specific geographical locations, en-
abling tourism planners and operators to understand popular routes, attractions,
and points of interest. By leveraging this data, destinations can optimise their in-
frastructure, improve accessibility, and create more engaging and personalised expe-
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riences for tourists (Rupf et al., 2006). Geotourism businesses can utilise pedestrian
data to design interactive and location-specific mobile applications, offering tourists
real-time information, guided tours, and recommendations based on their prefer-
ences and historic movement (Ribeiro et al., 2018). Additionally, insights derived
from pedestrian data can aid in the development of sustainable tourism practices by
identifying areas prone to congestion or overuse. This information empowers des-
tination managers to implement effective crowd management strategies, preserving
natural and cultural resources while ensuring a positive and enjoyable experience for
visitors. Ultimately, the applications of pedestrian data in geotourism contribute
to a more informed, sustainable, and immersive travel environment (Cessford and
Muhar, 2003).

Pedestrian data for urban planning

Pedestrian data plays a crucial role in modern urban planning, offering valuable
insights that contribute to creating safer, more efficient, and people-centric cities
(Gehl, 2013). By analysing pedestrian movement patterns, city planners can opti-
mise infrastructure development, such as the placement of crosswalks, pedestrian-
friendly zones, and public transportation hubs. Understanding foot traffic helps in
identifying areas with high pedestrian demand, allowing for the strategic allocation
of resources and the implementation of measures to enhance overall accessibility
(van der Spek, 2009). Pedestrian data is instrumental in designing urban spaces
that prioritise walkability and promote active lifestyles, fostering a sense of com-
munity and reducing reliance on private vehicles. In order to do so, Sevtsuk (2021)
simulates the pedestrian flows in Cambridge. He then proposes a similar traffic im-
pact assessment to evaluate the impact of pedestrian traffic on the level of service
in the field of study. Additionally, planners can use this data to assess the impact
of new developments or urban interventions on pedestrian flow, ensuring that the
changes align with the needs and behaviours of the community. Overall, the ap-
plications of pedestrian data in urban planning contribute to the creation of more
sustainable, liveable, and inclusive cities (Nieuwenhuijsen, 2020).
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Chapter 3

Data

In this chapter, the data used in the study will be presented. Steps in the acquisition
that were not considered in the Methodology chapter will be introduced such as the
use of software to download videos from the web or the hardware used for the capture
of videos.

3.1 Lausanne livestream video

Figure 3.1: Point of view of the camera (Ville de Lausanne, 2020)

The Bessières bridge is located in the City of Lausanne. It is located in the
vicinity of multiple points of interests (the high school of la Cité, the cathedral of
Lausanne). The webcam is located on top of the Pyxis (House of numerical culture
and exploration) building. It is centered on the bridge and can therefore see all the
traffic flows crossing the bridge. The video live stream is available on YouTube on
the official channel of the city of Lausanne1.

In order to make use of this video feed, we used the youtube dl application.
YouTube-dl is a command-line application that helps the user download videos di-
rectly from YouTube. It is released under the public domain by the copyright owners
and can therefore be used and modified by each user. The following procedure has
to be done in order to use the application. It is done in the terminal and assumes
that Python (2.6, 2.7 or 3.2<) is already installed on the computer :

1Link to the livestream: https://www.youtube.com/watch?v=y3sMI1HtZfE
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• Clone the original GitHub repository to the working directory :

g i t c l one https : // github . com/ ytdl−org /youtube−dl . g i t

• Change the current directory to the cloned youtube-dl repository :

cd path/ to /youtube−dl

• Download the video :

python −m youtube−dl −f 96 [URL to the youtube video stream ]

In some cases, some parameters may have to be specified such as the ffmpeg-location.
In case an error crops up following the preceding procedure, the README.md file
on the GitHub repository introduces the optional parameters that can be specified.

Image specifications

Parameters
Date 01.09.2023
Start hour 12:05
Length 5:59:15
Size of file 2.7 Go
Dimensions 1920x1020
Frames per second 30

(a) First video

Parameters
Date 17.10.2023
Start hour 16:58
Length 5:59:29
Size of file 2.7 Go
Dimensions 1920x1020
Frames per second 30

(b) Second video

Table 3.1: Parameters for the videos used in the study

Table 3.1 gives us general information regarding the videos used for this study.
Figure 3.2 is a schema of the scene with the different traffic axes and the position
of the camera.

Figure 3.2: Schema of the camera position on the Bessières bridge
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3.2 Lavaux images

This is part of a bigger counting project done for ”Lavaux Tourisme”. It is mandatory
for regions such as the Lavaux Region to count the traffic flows in order to keep being
registered in the UNESCO World Heritage List. As such, the project is to quantify
the affluence in the region along a specified itinerary and using multiple cameras
and Bluetooth sensors. The data that was to be collected in this location was not
readily available in time for the completion of this thesis. As such, this section shows
a potential application of the developed pipeline with the associated installation and
hardware. The counting segment localisation is between the villages of Epesses and
Rivaz. Those are multi use road segments which can be taken by foot, motorcycles
or even cars. The camera is positioned on the chemin du Calamin. Figure 3.3 is
a schema that shows the position and installation of the camera on the chemin du
Calamin. It is installed with a solar panel and a battery to be able to guarantee a
long period of detection without the need to be connected to the electric grid. In
Fig. 3.4 we can see the solar panel and the camera attached to the fence, the black
box contains the battery. As such, the hardware for this type of installation is made
of few components and can be installed in a wide range of places.

Image specifications

As mentioned above, due to some technical difficulties and the time constraints of
this study, no videos were taken at this spot.

Figure 3.3: Schema of camera position on the chemin du Calamin

Figure 3.4: Camera, battery and solar panel (Christian Kaiser, 2023)
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Chapter 4

Methodology

This chapter explains the various steps needed for the use of a pedestrian track-
ing system based on video sources. It is composed of three main parts : the
pedestrian detection, the pedestrian tracking and the pedestrian data analysis. Its
main objective is to clarify some key notions, explain the theoretical basis and
present the tools used for the conception of the final product. It shows the vari-
ous theoretical elements used for the detection, tracking and counting parts of our
study. It also provides all relevant resources needed to reproduce the steps on other
datasets or videos. All the code snippets provided in this chapter are written in the
Python language if not specified otherwise. The complete scripts can be found at :
https://github.com/MaxHenk/pedestrian counting.

4.1 Pedestrian detection

For the goal of this study, we decided to divide the detecting and tracking in order to
reduce the need for data storage in mobile systems such as seen on Figure 3.4. This
is also done in order to let the system run on longer time frames without the need
for too much human intervention. Another reason for the separation is to reduce
the hardware needed for storing the detections and removing the need for processing
power allotted to tracking. First the theoretical basis will be presented and then
the actual implementation.

4.1.1 Theoretical basis

For the classification and detection part of our work, we used a MobileNetV2-SSD
based method. This method is a lightweight model whose main purpose is to be
executed on mobile and embedded applications. This class of models was introduced
by Howard et al. (2017) as a direct response to the rising need of efficient solutions to
use in diverse real-world applications such as autonomous driving cars, augmented
reality or in wider uses such as pedestrian localisation.

The architecture of this model is constituted of multiple layers (Table A.1 in the
appendix shows the exact structure of the MobileNet model). The first layer is a
traditional convolutional that takes a Di × Di × M size image as input (Figure 4.1).
It outputs a Di × Di × N image where Di is the width and height of the image, M

is the number of input channels and N is the number of output channels.
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Figure 4.1: Filters used for traditional convolution layers (modified from Howard
et al., 2017)

The core layer used in the model is a depthwise-separable convolution layer (Fig-
ure 4.2). This is actually constituted of two layers, a depthwise convolution (noted
Conv dw in table A.1) and a pointwise convolution (Figure 4.3). The depthwise
convolution is a convolution layer of size Dk × Dk × 1 and it has the same number
of filters as input channels (M).

Figure 4.2: Filter used for depthwise convolution (modified from Howard et al.,
2017)

The result of the depthwise convolution layer is a stack of channels that does
not take into account intra-channel information. In order to get that, a linear
combination of the output of the depth layer is done. The pointwise convolution of
size 1 × 1 × M is used to extract new features.

Figure 4.3: Filter used for pointwise convolution (modified from Howard et al.,
2017)

The main advantage of this layer is in the improvement of computational cost
compared to standard convolutional layers. Standard convolutional layers have a
cost of :

Di × Di × M × N × Dk × Dk (4.1)

In the case of depthwise convolution layers, the computational cost is :

Di × Di × M × Dk × Dk + M × N × Di × Di (4.2)

Howard et al. (2017) state that this type of layer uses 8 to 9 times less computation
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and is therefore very useful for mobile applications such as the one needed for this
study. The model was trained on the COCO dataset (Lin et al., 2015). MobileNet
was trained on a wide range of objects (Table A.2 shows all the class names and
their class ids).

The other detection model is the PedNet, it is based on the DetectNet architec-
ture (Fig. 4.4) and has the same functioning principle. Its main objective is that,
given an input image and an associated grid square. The model must predict whether
an object is present and the location of the bounding box corners for that object.
This implies that this model only detect one type of object which, for PedNet, is
pedestrians. The architecture associated with this label is pictured in Figure 4.4. Its
first main component is a fully-convolutional network (FCN) similar to GoogleNet
but without the input layers, final pooling and output layers (Szegedy et al., 2014).
This model does not use fully-connected layers in order to accept varying sizes of
image inputs and also to use the pretrained GoogleNet model. The second step is
by clustering and filtering the bounding boxes based on a preset threshold. Lastly
a confidence score is attributed to each bounding box.

Figure 4.4: DetectNet architecture for training (Tao et al., 2016)

4.1.2 Implementation

The detection part of our study was done on a Jetson Nano Developper Kit. This
machine is «[...] a small, powerful computer that lets you run multiple neural net-
works in parallel for applications like image classification, object detection, segmen-
tation, and speech processing. All in an easy-to-use platform that runs in as little as
5 watts» (NVIDIA, 2023). The first part of the deployment needs the Jetson Nano
to be connected to the Internet to download the jetson-inference repository. It was
created by NVIDIA to give the tools to implement Deep Neural Networks (DNN)
on Jetson devices such as the Jetson nano developper kit. The DNN documented in
this repository are :

• imageNet : image classification algorithms such as AlexNet, GoogleNet or
ResNet. Those output class probabilities over the whole image.
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• detectNet : object detection algorithms that focus on extracting bounding
boxes of multiple objects in the frame.

• segNet : semantic segmentation algorithms, similar to its image classification
counterpart but instead of focusing on the whole image, the focus is on each
assigning a class to each pixel.

• poseNet : pose estimation algorithms focus on recreating a skeleton to objects.
It focuses on detecting movements such as hand gestures.

• actionNet : action recognition algorithms use video frames to recognise a
certain action/activity. The backbone of such algorithms is often image clas-
sification algorithms.

In this part of the study, we will focus on the detectNet. This type of algorithm takes
an image or video file as input and outputs a text file containing the detected objects.
The pre-trained detection algorithms was trained on 300x300 images, therefore it is
necessary to preprocess the videos to match those dimensions in order to maximise
the accuracy of our detections and so that the algorithm doesn’t reshape the input
images. If not done, the results will be distorted such as seen in Figure 4.5 where
the tracks crossing the pedestrian passage are slightly under the expected area.

Figure 4.5: Tracks (in green) with a 0.5 detection threshold on a non cropped video

As such, to use the pretrained models provided in the original GitHub repository,
it is necessary to first crop the videos in a 300x300 format so the coordinates of the
tracks are not distorted and can be adjusted to the accurate coordinates. To do so,
a video processing software can be used in order to extract a cropped version of the
video. To further test our tracking and counting pipeline, we vary the preprocessing
of the input videos (the first frames of those videos can be seen in appendix A.3).
Since the size of the image is fixed, the difference in preprocessing lies in the differ-
ence in scale. In videos S2 (A.2b) and O2 (A.2d), the pedestrians are ”bigger” than
in videos S1 (A.2a) and O1 (A.2c).
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The following line is used to launch the detection script on the terminal of the
Jetson device and can be further modified by the user depending on specific param-
eters.

python3 /path/ to / de t e c t i on / s c r i p t . py /path/ to / video / f i l e
/path/ to / output / f o l d e r

In Table 4.1 are the parameters that were changed while launching the detection
script for this study with a short description and their potential values.

key description

–network
This flag is followed by the name of the network to use,
by default it uses the ssd-mobilenet-v2 but it can take any
preloaded models that are installed.

–threshold

This flag is the minimum detection threshold, it is the
minimum confidence score a detection has to have in order
to be considered and saved to the outputs. The value
ranges between 0 and 1.

Table 4.1: Input parameters for the detection

For this study, the algorithms used for detection were the MobileNet and Mo-
bileNet inspired PedNet algorithms. These were chosen because of similarities be-
tween the training datasets and the videos used in this study. This was done in order
to maximise the accuracy of our detections. The detection threshold was chosen by
first comparing the visual tracks obtained by applying a threshold value of 0.25, 0.3,
0.5, 0.75 (see appendix A.5). Based on those results and after discussion with the
supervisor of this thesis, the chosen thresholds were 0.3 and 0.5.

For each detection, the following informations were written to a text file :

[confidence score, x1, y1, x2, y2, frame number, class id, date, hour] (4.3)

The confidence score reflects the certainty by which the computer assigns a class
to the detected bounding box. The x1, y1, x2, y2 are the coordinates of the bound-
ing box. The frame number equals to the count of frames since the start of the
video. The meaning of the class id changes depending on the algorithm used (the
labels related to MobileNet are found in the appendix A.2). The date and hour of
the detection are extracted using the python library datetime but in order to have
accurate information, an additional component or a stable internet connection needs
to be installed on the Jetson nano developer kit. In order to obtain a video stream,
it is also needed to connect a camera module to the device. In the case of this study,
videos extracted from the Internet were used instead of a camera stream. Also the
code was designed to generate a new text file every hour, this was done in order to
ensure that the text files created by the detection script (my detection.py available
on GitHub) never got too big in size which could result in corrupted files. Those
hourly files are then merged together once they are extracted and ready for the next
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section. This merging of files in the same directory can be done using the following
shell command :

cat ∗ . tx t > de t e c t i on ou tpu t s . txt

This results in a detection outputs.txt file that can be used in the following sections
to get information about the whole duration of capture.

4.2 Pedestrian tracking

This part of the study can be done on a standard computer and it is therefore
less relevant to reduce the computational cost of the scripts or the storage options,
contrary to the detection part. This differentiation of the steps makes it possible for
the end user to easily switch the tracking algorithm. It comprises of a theoretical
section further explaining the model used and the exact methods associated with
it. The second part explains the implementation of this model and focuses on the
practical requirements needed for the use of said model.

Libraries used

All the scripts were written in Python and use the following libraries :

• cv2 : Also known as OpenCV, it is an open source library widely used for
computer vision and machine learning projects. It contains a wide variety of
both traditional and state of the art algorithms.

• numpy : It is an open source library mainly used for numerical computing in
Python.

• sort : The sort library is the result of the work by Bewley (2016) and lets the
user implement the SORT algorithm in a simple way.

• os : A built-in Python library used to interact with the operating system.

4.2.1 Theoretical basis

The tracking was done using the SORT (Simple Online and Realtime Tracking)
algorithm (Bewley et al., 2016). In order to accurately track a pedestrian’s identity
between frames, each detected pedestrian is attributed multiple features in the form
of :

pedestrian = [x, y, s, r, ẋ, ẏ, ṡ] (4.4)

where x and y represent the horizontal and vertical positions of the detected
pedestrian, while s and r represent the scale and the aspect ratio of the bounding
box. The ẋ, ẏ and ṡ parameters are the associated velocities to these parameters.
The aspect ratio is the only constant and therefore has no velocity associated to it.
If a pedestrian is already detected, the associated bounding box is updated and the
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velocity components are then dynamically updated using a Kalman filter. Figure
4.6 is a visual representation of the iterative process behind this filter.

Figure 4.6: Diagram of the Kalman filter (Michel van Biezen, 2015)

As shown in Figure 4.6, the whole filter revolves around three formulas to cal-
culate the Kalman gain, the current estimate and the new error in the estimate.
Considering the following table :

Kalman Gain KG Current estimate Estt

Error in estimate EEst Previous estimate Estt−1
Error in measurement EMea Measurement Mea

Table 4.2: Nomenclature for the Kalman filter (modified from Michel van Biezen,
2015)

The Kalman gain varies between the values of 0 and 1. The closer its value is
to 1, the more accurate the measurements are and the more unstable the estimates
are. It is a way to quantify how much of the new measurement (Mea) is useful for
the current estimate (ESTt). The three following formulas are the mathematical
basis for the calculation of the Kalman filter.

KG = EEst

EEst + EMea

(4.5)

Estt = Estt−1 + KG[Mea − Estt−1] (4.6)

EEstt = EMeaEEstt−1

EMea + EEstt−1

→ EEstt = [1 − KG]EEstt−1 (4.7)

By using the previous filter, the velocity components of each detected object (4.4) are
then solved optimally when a new bounding box is associated to an already detected
bounding box. In the case of a new detection, the linear velocity model is used to
make initial predictions. Those components are then used for the estimation of the
future position of the bounding box. To accurately associate a bounding box to a
detected pedestrian, the algorithm predicts its new location in the current frame.
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To do that, it first computes the Jaccard distance (or Intersection over Union [IOU]
distance) between the predictions and the detected objects by using the following
method :

IOU = Area of Overlap

Area of Union
(4.8)

Choosing the IOU is a good way to reduce the impact of short-term occlusion on
the tracking. After obtaining the corresponding matrix, the Hungarian algorithm is
used in order to make the most cost effective choices in assigning detected objects
to bounding boxes. This algorithm is used in order to resolve the data association
problem (mentioned in section 2.1). In the context of this study, the two observation
stages are two adjacent video frames. The parameter used for the comparison is
the Jaccard Distance computed among detected objects in two video frames. The
resulting matrix is used to tell the link between the observed components in an
observation stage to another. This algorithm can be separated in two steps :

1. Creating the assignment matrices composed of the Jaccard distance between
a previously identified bounding box and the newly detected bounding boxes

2. Mapping each previously detected bounding box by finding the optimal solu-
tion in the assignment matrix

The second step is done by applying the steps below to find the most optimal
combination (Bruff, 2005):

1. Find the minimum value of each row [rMin]

2. Subtract rMin to each row

3. Find the minimum value of each column [cMin]

4. Subtract cMin to each column

5. Cover all the zeros in the matrix with the least amount of vertical and hori-
zontal lines possible.

6. If the number of lines used is equal to the total number of lines then the
optimal solution is found. If not, go to the next step.

7. Subtract the smallest uncovered value from all the non completely covered
rows and add this value to all the completely covered columns. Finally go
back to step 5.

Even so, a minimum IOU (IOUmin) is set in order to reject assignments where
the overlap is less than the predefined value. By using the IOUmin, it is easy to
identify untracked objects and assign a new id to entering objects. At first, the
velocity is set to zero for newly detected objects. Each newly identified pedestrian
passes a ”probation” period where the computer makes sure they are not tracking
an already identified pedestrian.
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It is also significant to note that this algorithm has a short term memory in the
sense that it does not support re-identification of objects, meaning it will count the
same person twice if that pedestrian appears at two different times. This is due to
the fact that tracked objects are terminated once they are undetected for a fixed
number of frames (Tlost) and that it leads to more efficient use of computational
resources.

4.2.2 Implementation

Using the merged detection outputs.txt file created at the end of the detection step,
we perform the SORT algorithm on this unified text file to extract the tracks. The
input needs to strictly follow the format in equation 4.9 and can be modified using
the parameters in table 4.3.

[x1, y1, x2, y2, score] (4.9)

key description

–max age Maximum number of frames to keep alive a track without
an associated detection (Tlost)

–min hits Minimum number of associated detections before a track
is initialised

–iou threshold Minimum intersection over union threshold for a bounding
box to be matched to one another. (IOUmin)

Table 4.3: Input parameters for the tracking

As stated before, the first step revolves around the initialisation or update
of the velocities of the detected objects using a Kalman Filter. In the code
(sort detections.py available on GitHub), it is done by using the Kalman Filter
sub module of the filterpy library. It comes with an update function that assigns
new values to unmatched detections and updates the values in already matched de-
tections. The Kalman filter is also used to make predictions on the next state of the
bounding boxes. For the data association step, a linear assignment function using
the Hungarian algorithm is written to make the most optimal choice between the
bounding box of a detected object and the predicted bounding boxes. The sorting
script outputs a text file containing a bounding box with the following information,
each line in this file associates a bounding box and its frame number with a track
id :

[frame number, x1, y1, x2, y2, track id] (4.10)

To visualise the tracks, we extract the center of each bounding box and then
draw a line between each of those points based on the track id using the open cv
library. We draw the tracks on the first frame of the video to better contextualise
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where and how the tracks are distributed in the field of view (draw tracks.py on
GitHub).

4.3 Pedestrian data analysis

This section’s objective is to explain the various methods used to extract information
from the detections and tracks obtained from the previous sections. It is done in
two parts : the first setting the theoretical basis of the methods used and the second
explaining the various technical requirements needed to obtain the expected results.

Libraries used

All the scripts were written in Python or using the command prompt and use the
following libraries :

• cv2

• numpy

• matplotlib : A library used to make static, dynamic and interactive figures
in Python. For this study, it was mainly used in the analysis part to make
adequate visualisations.

4.3.1 Theoretical basis

For the analysis of the results, this study will focus on extracting Origin/Destination
counts based on the tracking explained in the precedent sections. This type of data
is widely used in multiple scenarios such as in train stations (Hänseler, 2016), natural
parks (Rupf et al., 2006) or on a city scale (Sevtsuk, 2021).

For the analysis and the creation of Origin/Destination counts we implemented a
solution in Python using the line-line intersection algorithm (Cormen et al., 2022) to
extract the entering and exiting tracks going over each counting line. This algorithm
uses the slope of the line segments to make comparisons. The slope of a line segment
of coordinates [(x1,y1),(x2,y2)] is calculated by using the following formula :

Slope = y2 − y1
x2 − x1 (4.11)

In order to know if a segment intersects another, the algorithm uses a concept
called the orientation of an ordered triplet of points. Figure 4.7 showcases the three
possibilities of orientation.

Based on those three orientations we can expand this concept to find if two
segments intersect or not. Considering a segment A with a starting point a1 and
an ending point a2 and a segment B with starting point b1 and ending point b2.
Segments A and B intersect intersect only if one of the following cases is verified :
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Figure 4.7: Clockwise, counterclockwise and collinear orientation of a triplet of
points (from left to right) (Goodrich et al., 2014)

• General case :

– (a1, a2, b1) and (a1, a2, b2) have different orientations and

– (b1, b2, a1) and (b1, b2, a2) have different orientations

• Special case :

– (a1, a2, b1), (a1, a2, b2), (b1, b2, a1) and (b1, b2, a2) are all collinear and

– the x-projections of (a1,a2) and (b1,b2) intersect

– the y-projections of (a1,a2) and (b1,b2) intersect

In order to compute the orientation of an ordered triplet of points [a,b,c], where
a1, b1, c1 are the x-coordinates of the points and a2, b2, c2 are the y-coordinates.
The following can be used:

b2 − a2
b1 − a1 = c2 − b2

c1 − b1 (4.12)

This can also be written in the form of :

((b2 − a2) × (c1 − b1)) − ((c2 − b2) × (b1 − a1)) = value (4.13)

This result can further be interpreted in the following ways :

• if value > 0 then the orientation is clockwise

• if value < 0 then the orientation is counterclockwise

• if value = 0 then the orientation is collinear

As the counted segments intersecting with the counting line are summed up, it
is also possible to separate the origins and destinations by doing the cross product
between the counting line and the intersecting segment. In order to compute this,
the direction of the intersecting segment with the counting line must be extracted.
In order to do so, it is necessary to compute the vector between the extremities of
each segment. Considering the pair of points A and B, A having coordinates (x1,y1)
and B having (x2,y2), equation 4.14 can be used to calculate the vector between
those points.
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A⃗B = (x2 − x1, y2 − y1) (4.14)

Using the x and y coordinates of the points, the cross product of two dimensional
vectors result in a scalar that can be interpreted in order to know the orientation of
the intersecting segment. The formula to compute this is in equation 4.15.

Cross Product = x1 × y2 − x2 × y1 (4.15)

The relation between the cross product and the the orientation between one another
can be understood by the rule of thumb (Weisstein, 2024) and is easily interpretable
since the vectors used in this study are two dimensional. This implies that the
resulting value of our cross-product is a scalar that is positive in the case of an
entering segment and negative in case of an exiting segment.

4.3.2 Implementation

For the methods described in the precedent section to work, it is necessary for the
tracks and the counting lines to be set in a specific format. The tracks must be first
aggregated into polyline objects in the format (4.17), where each object is composed
of multiple pairs of coordinates for the extremities of each segment :

polyline = [[x1, y1], [x2, y2], ..., [xn, yn]] (4.16)

polylines = [[polyline1], [polyline2], ..., [polylinen]] (4.17)

The counting lines are lines composed of 2 pairs of coordinates set in a clockwise
manner (Fig. 4.8). Meaning the vector associated to the counting line will always
be in the same perpendicular direction to the entryway. In this way, it is irrelevant
at which angle or position in the image the counting line finds itself. This is done so
that the result from the cross product can always be interpreted in the same way.

Figure 4.8: Orientation of the counting lines on video 01

The next step involves extracting the intersecting segments between the counting
lines and the tracks. Following the general and special case identified in the last
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section, the intersecting segments line segments are extracted (count OD.py available
on GitHub). Afterwards, calculating the cross-product between the intersecting
segment and the counting line to identify the direction of the segment and know
if the track is coming in or going out. This gives us the associated trackid to the
segment and therefore can let us sum up the number of unique tracks going in and
out of each counting line.
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Chapter 5

Results

In this chapter, the results of this study are discussed. Multiple detection algorithms
and their associated results will be shown. In order to assess our results, a cross
comparison will be done on two videos taken on the first of September 2023 and the
tenth of October 2023, both preprocessed differently (see section 4.1.2 for details
on the preprocessing steps), two differing detection thresholds and two tracking
thresholds. This will be done by providing multiple images and tables relative to
the amount and quality of the tracks and the detections. After exposing the results,
an analysis will be done to explain some of the observed phenomena.

Table 5.1 contains the parameters used for the detection for this study and the
acronyms associated with the results of the detections.

XXXXXXXXXXXXThreshold
Model MobileNet PedNet

0.5 mnet0.5 pnet0.5
0.35 mnet0.35 pnet0.35

Table 5.1: Acronyms associated with the models and detection parameters

Table 5.2 shows the three combination of chosen parameters for the tracking. As
recommended by our thesis supervisor, the three variants only vary based on the
maximum amount of frames a track is kept alive without a new detection associated
to it (Tlost). The videos having a 30 frames per second framerate, the Tlost parameter
varies between one, two or three seconds.

Acronym 30f 60f 90f
Maximum age (frames per second) 30 60 90

Minimum hit 3
IOU threshold 0.3

Table 5.2: Tracking parameters and associated acronyms

The videos will also be named according to Table 5.3. The first frame of each
video can be found in section A.3. These first frames will also be used to draw the
identified tracks and be used as a canvas to visualise the affluence of pedestrians in
each video.

As seen on the cropped images in the appendix (A.3), the change lies in the scale
and the spot of the crop. The crop done on video S2 and O2 was done on a part of
the image which, over the two videos, had more pedestrian traffic than the rest of
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Video name Description

S1 This video is the result of the first kind of preprocessing
on the video taken on the first of September (A.2a).

S2 This video is the result of the second kind of preprocessing
on the video taken on the first of September (A.2b).

O1 This video is the result of the first kind of preprocessing
on the video taken on the seventeenth of October (A.2c).

O2 This video is the result of the second kind of preprocessing
on the video taken on the seventeenth of October (A.2d).

Table 5.3: Videos used and the names associated to them

the image. This change in preprocessing was done in order to see if the difference
in the size of the pedestrians (due to the change of scale) could have an impact on
the results.

5.1 Detection, tracking and counting results

To show a general overview of the results of our study, table 5.4 shows the number
of unique tracks identified on each video and with each combination of parameters
according to the precedent naming conventions.

Detection parameters SORT Parameters S1 S2 O1 O2

mnet0.5
30f 7254 7875 5347 4468
60f 7013 7603 5212 4332
90f 6887 7454 5143 4264

mnet0.35
30f 12397 12342 8490 6817
60f 11956 11839 8268 6592
90f 11744 11596 8167 6496

pnet0.5
30f 5097 500 1147 73
60f 4785 1032 459 70
90f 4539 984 426 2

pnet0.35
30f 5760 575 1266 76
60f 5416 512 1181 69
90f 5156 464 1119 68

Table 5.4: Number of tracks extracted for each combination of parameters and
videos

This lets us observe multiple general expected trends :

• Lower thresholds in detection lead to a higher number of tracks being identi-
fied.

• Increasing the maximum time a track can stay ’alive’ without having a matched
detection decreases the number of tracks. This decrease is pretty constant
regardless of the video or other varying parameters.

• There is a similarity in the amount of detections between video S1/S2 and
video O1/O2 using the MobileNet detection algorithm.
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But also unexpected trends, such as :

• The PedNet algorithm has overall lower counts of tracked pedestrians than
the MobileNet.

• The change in preprocessing shows an increase in the number of tracks iden-
tified for the mnet0.5 detections.

• The change in preprocessing drastically decreases the amount of tracks for the
PedNet algorithm regardless of the detection threshold used.

• The MobileNet algorithm extracts more tracks than PedNet.

Another important part of our results lies in the extraction of Origin/Destina-
tion counts. The counting lines used for the extraction of the following tables can
be found in the appendix (A.4) for each video. The numbering associated with each
counting line is also on those images. As we can see in the resulting Origin/Des-
tination counts (A.10), a majority of the tracks that are detected don’t cross the
counting lines or are not detected as such. We can also observe that the pretty
constant variation that appeared between 30f , 60f and 90f in table 5.4 is almost
non existent. In order to fine tune our results, we will first analyze the results for
each video individually and then proceed to the analysis.

5.1.1 September 1st, first kind of preprocessing

Table 5.4 shows a large number of tracks across all combinations of parameters. As
supposed before, we observe a constant decrease in the number of unique tracks with
the change of the tracking parameters. Table 5.5 shows that for the same algorithm,
there is a similar variation in the total of tracks. The change from 30f to 60f marks
a bigger variation in the number of tracks. This can be due to the fact that keeping
a track id alive for two seconds instead of one is a good way of increasing accuracy in
such a study site. As this study site has multiple paths, there can be multiple spots
where a pedestrian will enter into conflict with another moving object. Those zones
of conflict can be the reason why a person will stop or change direction abruptly
before resuming its itinerary so giving a 2 second leeway can make it possible for
the tracking to account for those small changes.

mnet0.5 mnet0.35 pnet0.5 pnet0.35
30f → 60f -241 -441 -312 -344
60f → 90f -126 -212 -246 -260
30f → 90f -367 -653 -558 -604

% change 30f → 90f -5.06 -5.27 -10.95 -10.49

Table 5.5: Variation of tracks in video S1

Figures 5.1 show the distribution of the detections across the whole video. With
each bin being an interval of fifteen minutes, the video is subdivided in twenty four
time periods.
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(a) mnet0.5 (b) mnet0.35

(c) pnet0.5 (d) pnet0.35

Figure 5.1: Distribution of detections in video S1

Those histograms let us see that our models identify regular variations in the
number of detections. A hypothesis for the variation of detections is due to the
hourly end of class time happening at the nearby gymnasium. This can also explain
why there is such an almost hourly rising increase in the detections for this video.
At around five in the afternoon, a decline in the number of detections in all the
histograms can be seen. For the MobileNet, this decrease can be explained by the
fact that the last students of the nearby high school are gone at this hour on a
Friday evening. But the decrease in the PedNet detections are far sharper than
the MobileNet ones. A hypothesis to explain this difference is the extension of the
shadow across half of the field of view which considerably impacts the luminosity
of the image (as pictured in image 5.2). The combination of both the end of the
day and the end of school period could be the explaining factors for such changes.
MobileNet seems to be less impacted by the change in luminosity due to the fact
that the number of detections still matches the down times captured during the
afternoon.

The figures at appendix A.6 lets us get a overview of the drawn tracks for each
scenario. This confirms that the reduction of the detection threshold effectively
sharply increases the number of tracks being identified. The most notable observa-
tion from those images is related to the difficulty of both algorithms in completing
the task over the pedestrian crossing. For MobileNet, some tracks can be seen but
there seems to be a blank spot in the middle aisle where our algorithms have some
difficulty in following the pedestrians. This could be related to the sudden change in
background colour, the presence of urban infrastructure or in some cases the change
in velocity when crossing the street. The PedNet algorithm shows a complete lack
of tracks over the pedestrian crossing. Based on the previous hypothesis of a higher
sensitivity to light changes, the zebra markings can be the reason why the PedNet
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Figure 5.2: Video S1 at 4:50pm

has not detected any tracks over this part of the video.
The O/D counts are in appendix A.10. Most of the tracks don’t cross the count-

ing lines and therefore this leads to such results in the counting of origin/destinations
for each counting line. This could be an issue with model training or depth percep-
tion. One solution to enhance the counts and guarantee a good counting result is to
move the counting lines away from the border of the image. This is done in response
to the minimum hit parameter of the SORT algorithm which requires for an object
to be detected thrice before it can be made into a track. Alternatively, lowering
this parameter could improve the results at the risk of adding even more noise to
the results at the cost of accuracy. The O/D counts don’t show as much variation
between 30f , 60f and 90f as the absolute number of tracks. That could be due to
the fact that most of the counting lines are passing points where pedestrians will
not suffer from too much variation in velocity and direction. This leads to a better
quality in tracking using the Kalman Filter.

5.1.2 September 1st, second kind of preprocessing

As stated in the general trends, the MobileNet results for video S2 are very similar
to those of video S1. That is not the case for PedNet where we see a very strong
decrease in the amount of tracks between video S1 and video S2.

mnet0.5 mnet0.35 pnet0.5 pnet0.35
30f → 60f -272 -503 -41 -63
60f → 90f -149 -243 -33 -48
30f → 90f -421 -746 -74 -111

% change 30f → 90f -5.34 -6.04 -14.8 -19.3

Table 5.6: Variation of tracks in video S2

The variation of tracks with the tracking parameters stays consistent with the
precedent results, with a smaller variability for the MobileNet results and a higher
one for PedNet. This further confirms that the impact of putting 2 seconds of Tlost

has a more significant impact on the tracking process than putting 3 does.
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(a) mnet0.5 (b) mnet0.35

(c) pnet0.5 (d) pnet0.35

Figure 5.3: Distribution of detections in video S2

The same hourly variation can be observed on the mnet0.5 and mnet0.35 his-
tograms as for video S1. This shows that the difference in preprocessing has little
impact on the MobileNet results. By analysing the images at appendix A.7, we
can observe that the algorithm does a better job at tracking pedestrians across the
crossing. This is also most likely due to the difference in preprocessing. In this
video, pedestrians are larger and can therefore be recognised with higher confidence
compared to video S1 and O1.

The PedNet model is very heavily influenced by the change in preprocessing so
it is not possible to extract the same patterns that were found in the first video.
One thing to note is a sudden spike in the detections in the middle of the detection
period (around 3pm) with no particular event or massive group of pedestrians going
through the field of view. Appendix A.7 displays the minimum difference in the
amount of tracks between 30f , 60f and 90f for MobileNet. As opposed to video
S1, there is more tracks being drawn directly on the cars path. This potentially
means that MobileNet does a worse job at differentiating cars and pedestrians at
this scale or that it can recognise the persons sitting in cars and therefore classify
them as pedestrians. The PedNet model has almost no results to show apart from
some specks. We can still see a complete absence of tracks on the zebra crossing.

The O/D counts for this video are available in the appendix (A.11). For Mo-
bileNet, we can see that counting line 2 and 4 are well tracked and show some
results. The other pair have less counts than expected. The zebra crossing counting
line does not give any information even though there are drawn tracks on it. This
is probably due to the position of the counting line being too close to the corner of
the image.
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5.1.3 October 17th, first kind of preprocessing

In Table 5.4, we can observe a large disparity between the two algorithms. The
unique tracks identified by the MobileNet are far more numerous than its PedNet
counterpart. The decrease in unique tracks related to the change in tracking param-
eters is very different depending on the algorithm. Table 5.7 shows that, in the case
of the mnet0.5 and mnet0.35, there is a −3.81% and −3.8% variation, we can infer
that the model does a good job at tracking with the initial parameters for this video.
The pnet0.5 and pnet0.35 show a much higher variation (−14.21% and −11.61%).

mnet0.5 mnet0.35 pnet0.5 pnet0.35
30f → 60f -135 -222 -115 -85
60f → 90f -69 -101 -48 -62
30f → 90f -204 -323 -163 -147

% change 30f → 90f -3.81 -3.8 -14.21 -11.61

Table 5.7: Variation of tracks in video O1

(a) mnet0.5 (b) mnet0.35

(c) pnet0.5 (d) pnet0.35

Figure 5.4: Distribution of detections in video O1

Figure 5.4 shows a clear drop in the number of detections around the 7pm mark.
This observation can be done across all detection parameters. This drop can be
due to multiple factors such as the change in lighting due to the sun fall and the
activation of street lighting. But another possible cause would be the end of the
work or school day and a lower amount of traffic. Figure 5.5 shows the contrast
of lighting before 7pm and after 7pm. Those histograms also show that there is a
very high variability in the number of detections. The detection threshold plays a
very significant role for the MobileNet and the PedNet. But even if the number of
detections is a lot higher the lower the threshold is, the patterns identified by the
algorithms are almost identical. The MobileNet identifies two peaks and the PedNet
identify a single one.
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(a) Snapshot of video O1 at
6:30pm

(b) Snapshot of video O1 at
7:30pm

Figure 5.5: Lighting contrast in video O1

The images at A.8 confirm the above mentioned discrepancy between the two
algorithms. The MobileNet does a relatively good job at tracking objects of interest
across the whole image but the PedNet seems to not be able to track pedestrians
on the majority of the image but the right side of the bridge. Also there is still not
even a trace of a track on the pedestrian crossing as seen in video S1. This further
confirms the hypothesis that the PedNet either has trouble detecting pedestrians
over the zebra crossing or that the bounding boxes resulting from detections over
the crossing are so different from the ones before that the data association step of
our algorithm can not be successfully completed. The images resulting from the
MobileNet show the same hole in the middle of the pedestrian crossing that was
observed in video S1. One particular thing about the tracks is the presence of a lot
of them on the road on figure A.12 and A.13. This is probably due to some cars
being detected as pedestrians.

The Origin Destination counts associated to video O1 are at appendix A.12.
As expected from the aforementioned observations, there is a stark contrast in the
number of counts done on the PedNet and MobileNet ones. In the case of MobileNet,
we can see that there is two counting lines that have performed a lot better than
the rest. Number 3 and 5 are the counting lines that are on the right side of the
bridge and in the bottom left corner respectively.

5.1.4 October 17th, second type of preprocessing

Video O2 is the video that has by far the least amount of unique tracks across all
detection models. This may partly be due to a smaller range of detection due to the
change of scale or, in the case of PedNet, a combination of aggravating factors such
as the change in lighting (as pictured in figure 5.5) or the preprocessing difference
resulting in a worse performance.

As seen in Table 5.8, the variation of unique tracks in mnet0.5, mnet 0.35 and
pnet0.35 are very similar to the ones observed on the other videos but not for pnet
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mnet0.5 mnet0.35 pnet0.5 pnet0.35
30f → 60f -136 -225 -3 -7
60f → 90f -68 -96 -68 -1
30f → 90f -204 -321 -71 -8

% change 30f → 90f -4.56 -4.7 -97.26 -10.52

Table 5.8: Variation of tracks in video O2

0.5, where the decrease is very important (-97.26%).

(a) mnet0.5 (b) mnet0.35

(c) pnet0.5 (d) pnet0.35

Figure 5.6: Distribution of detections in video O2

Figures 5.6 show us the same patterns for the MobileNet where we see a grad-
ually decreasing number of detection until 7:30pm where they stabilise with some
occasional peaks. The PedNet model did a very bad job at detecting pedestrians as
it stopped detecting pedestrians at approximately 7:30pm too. This can be seen by
the absence of detections from that point on.

Figures 5.6a and 5.6b further confirm the need for the counting lines to be
positioned a bit further from the border in order to guarantee a good count. It is
also possible to see a lot of noise in the mnet0.35 version of the results.

The PedNet results are completely empty and show no tracks apart from a
single one on the top right of the image (5.6c) that is most likely a car due to its
position. Those empty results are therefore translated into completely empty origin
destination counts. This shows that the combination of dimming lights and this
configuration in terms of scale is not appropriate for the PedNet.
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Chapter 6

Discussion

In this chapter, we will first discuss the results of the previous chapter and delve
deeper into the analysis. Following this, the limitations that were encountered while
realising this study will be discussed. Also future works and some potential im-
provements will be described.

6.1 Analysis

As we can see from the precedent observations, there is a vast disparity between the
detection models. The MobileNet performs far better than the PedNet one. This
can be seen by the amount of tracks and the visualisations for each scenario. The
MobileNet seems to be more resilient to change and adapts better to variability in
external factors such as shadow contrast, or illumination variation. The drop in the
amount of detections that happens with the appearance of shadows on video S1/S2
for pnet0.5 and pnet0.35 is a clear indication of that. Also the overall difficulty of all
models in detecting and tracking accurately once the night falls further proves the
sensibility of such methods to environmental variations. To reduce this vulnerability,
choosing a detection algorithm that was trained on a wider range of images like
MobileNet is a better way to make assumptions regarding the pedestrian patterns
and to extract useful data from such video feeds. Even then, it is crucial to combine
the insights extracted from the detections histogram, the visualisation of the tracks
and the count of origin destination for each counting line. This estimation can be
used to make accurate planning decisions.

In order to minimise the computational cost of the tracking while having the best
results, the best configuration of parameters would be to set the Tlost to 60 frames
(2 seconds). This is also so that the Kalman filter used by the SORT algorithm can
be used in the most efficient way to predict the next state of the detected bounding
box, as it can not always take into account minute direction or velocity variations.
Of course, in the case of smaller datasets, the difference will not be as obvious.
If the number of detections gets larger then the tracking process gets more time-
consuming, so the trade off between execution time and quality results need to be
taken into account. The number of detections and the resulting tracks vary with the
chosen detection threshold as seen in the figures A.5, A.6, A.8, A.7 and A.9. This
led us to believe that choosing a threshold between 0.3 and 0.5 would provide the
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best results while removing the most noise and as such creating less errors in the
detections.

Although mnet0.5 and mnet0.35 have less trouble detecting in a wider range
of conditions, we can observe the rise in the detection of noise or other objects as
pedestrians. Notably in figure A.9 where a lot noise can be seen on the road. So
although lowering the detection threshold increases the number of detections, the
results are more prone to errors in detection. One important defect in the findings
of this study is the difficulty in tracking pedestrians across the zebra crossing which
represented a main axis in the traffic flow of the study site.

All those findings highlight a central component of our pipeline which is the
choice of the detection model which directly impacts on the overall quality of our
results and the ability of our pipeline to make accurate observations and extract
accurate and relevant insights. This also lets us confidently say that using the
proposed pipeline works and has led us to acquire a more thorough understanding
of the optimal methods and parameters used for pedestrian data extraction and
analysis.

6.2 Limits

This study was done to construct a detection and tracking pipeline to be used on
portable devices and with the objective of tracking and counting pedestrians. We
therefore exclude the other modes of transport such as cars, bicycles and public
transport. Also, this study was performed in an urban environment where there is
a clear organisation of pedestrian pathways which is not the case in every scenario.
The whole study uses a particular set of hardware and it was not tried on an another
set of cameras, this could lead to variations in the results.

The sample of videos used for this study was kept on the lower end, for us to
perform a wide range parameter variation testing. Those parameters were :

• The preprocessing parameters such as scale and position that are associated
with the cropping of the videos to an accepted format by the detection algo-
rithm.

• The detection confidence threshold used to control which detections were writ-
ten to the output file based on the confidence score associated with them

• The tracking parameter Tlost which is the number of frames during which a
track is kept ’alive’ without an associated detection. This is a parameter that
is increased in order to reduce the impact of small direction or illumination
variation and occlusion.

This lower number of initial videos may hinder the generalisation of the observed
optimal parameters and the performance of the algorithms in varying scenarios.
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The choice of the detection algorithm was constrained by the ones available on
the initial jetson-inference GitHub repository. This is partly due to the constraint of
using the Jetson Nano Developer kit for the detection part of our pipeline, as such
we chose ready-to-use models on this type of device. Using those models and the
architecture associated with them proved to be the right choice as the compatibility
between the Jetson and the repository was perfect. The initial counting project
that we took inspiration from used the SORT algorithm and did the detection on a
Jetson too. The results were very similar to our expected results. As such we chose
the SORT algorithm even though it is not the latest model for tracking. It is one
on which a lot of development has been done such as DeepSORT or Bot-SORT.

Using other video sources could have further diversified our results and proven
some of our observations relative to the sensitivity of the models to illumination and
preprocessing variations. The impact of those variations can be seen by the fact that
all the models experienced a significant drop in the amount of detections once the
lights dimmed and the source of illumination changed to street lights. Although,
since the models were pre-trained, the results of this study also give us insights into
the adaptability of the models in front of new data. Making sure the MobileNet
adapts to various scenarios could prove to be crucial in order to extract valuable
information from its detections.

The findings of this study can be generalised to similar kind of videos but further
testing would need to be done in order to prove if a change in hardware would have
an impact on the detections and the subsequent tracking process.

It is important to note that the data used for this study is publicly available
and can be used as stated on the official website of Lausanne about its use of
video surveillance 2. This webcam is installed because of its wide angle and the
impossibility to recognise particular features on specific pedestrians. Therefore it
is in accordance with data privacy laws and can safely be used. In other scenarios
such as the Lavaux one, there was a need for conversation with the local authorities
in order to install camera devices on public properties.

6.3 Improvements

The development of an effective pipeline for extracting reliable data from video
cameras and then analysing this data is still a subsequent effort and is faced with
multiple difficulties as seen in the last section. Overall the emergence of a multitude
of open source tools that can be programmed to answer the current societal problems
will slowly lead to even better performances. But as of now, there still exist some
challenges to be addressed to provide reliable data and a simple way of acquiring it.

The first main improvement can be done on the choice of algorithms for the
2FAQ related to video surveillance for the city of Lausanne:

https://www.lausanne.ch/officiel/administration/securite-et-economie/police-de-lausanne/a-
propos/videosurveillance/faq-videosurveillance.html
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detection and tracking part of the study. Using state of the art methods and imple-
menting those, it is expected that there would be a substantial increase in accuracy.
Recently, works on deep-learning techniques for detection and tracking have been
researched and could be used to fulfill the same goals as those of this study. They are
still not as lightweight as needed for a portable system such as the one running on
the Jetson Nano Developer but as the technology matures, there will be a reduction
in the computational cost. Or it could come from the development of more compact
and powerful hardware that is capable of running such algorithms for longer times.

Apart from the choice of algorithm, the main way of increasing the accuracy of
our results, regardless of the method used, is to train our model on the dataset to
be used. But this solution comes with an additional need for resources in labelling
and creating data. But the trade off can be good if the spot is to be repeatedly used
or at least in similar locations where the trained model could have a good enough
performance with some calibration. As we see in this study, choosing the most
optimal combination of parameters can lead to vast differences. So preprocessing
the videos in a way that the objects of interest look almost the same as the objects
on which the model was trained on could lead to far better performances for the
detection, tracking and counting.

Alternative ways of counting and extracting O/D counts using ReID and transfer
learning are being developed (Wong et al., 2022) to extract pedestrian data on bigger
scales and using multiple cameras in different spots.

More related to the results of this study, using a wider range of videos could
further confirm or deny the claims that were made in the preceding sections.

One important point to note is that using multiple sensors to detect the same
phenomenon can often lead to a rise in the accuracy of the results due to the cross-
comparison of results and by using each sensors to their advantage. There is no
single sensing technique that fits all purposes. Instead, often the simultaneous con-
sideration of multiple data sources yields the most reliable results. Just as stated
by Labbe (2020) in his work on Kalman filters : «[...] two sensors, even if one is less
accurate than the other, is better than one».
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Chapter 7

Conclusion

In pursuit of creating a simple pipeline for the analysis of pedestrian data using
camera sensors, this study has delved into the extraction of reliable data from raw
video inputs and the analysis of this data. Firstly, we can can conclude that :

• There exists a large variability in the results extracted depending on the de-
tection model.

• The training of a model has a large impact on the results too as the more
similar a training dataset is to the new data, the better the results will be.

• The parameters of each method are central in obtaining adequate results. This
is true at every step of the pipeline.

• Environmental factors play a very important role in the quality of the results.

• If the input images are preprocessed, it also plays a pivoting role in the quality
of the extracted data.

In comparing the extractions of the PedNet and MobileNet algorithms, this study
provides valuable insights into the capacity of those models to make accurate de-
tections in various parameter combinations. Also while the change in parameters
for the SORT algorithm gave more similar results across all combinations bar a few
exceptions, it did however confirm the need to adapt some parameters according to
the study site to account for site specific behaviours due to congestion, interaction
with other modes of transport and change in pathway width.

Using the findings from the first part of the pipeline, it was possible to extract
insights in regard to the use of urban spaces and pedestrian behaviour patterns :

• As presupposed, it was possible to identify the rush hours and the spatial
distribution of the pedestrians.

• Using the O/D counts it was also possible to identify the main foot ways.

While those findings provide valuable insights in the topic of counting pedestrians
from camera sources, it is important to keep in mind that there are limitations
related to the use of cameras for such purposes and that using other tools such as
Bluetooth, GPS or mobile data in combination with camera sensors for validation
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will definitely provide higher accuracy results than focusing on a single type of
sensor.

In conclusion, this study integrates itself in the work of sustainable cities in
promoting walking as a mode of transport and can be used as a starting point to
provide insights into how spaces are being used. This work shows the feasibility
of setting up such pedestrian counting systems from video sources in urban spaces.
Even so, it does need to go through a parameter search particular to each study site
based on various factors. Using those, open source tools can be used to reproduce
the pipeline and aid in further urban development.
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Appendix A

A.1 MobileNet Architecture

Type / Stride Filter Shape Input Size
Conv / s2 3 × 3 × 3 × 32 224 × 224 × 3
Conv dw / s1 3 × 3 × 32 dw 112 × 112 × 32
Conv / s1 1 × 1 × 32 × 64 112 × 112 × 32
Conv dw / s2 3 × 3 × 64 dw 112 × 112 × 64
Conv / s1 1 × 1 × 64 × 128 56 × 56 × 128
Conv dw / s1 3 × 3 × 128 dw 56 × 56 × 128
Conv / s1 1 × 1 × 128 × 128 56 × 56 × 128
Conv dw / s2 3 × 3 × 128 dw 56 × 56 × 128
Conv / s1 1 × 1 × 128 × 256 28 × 28 × 128
Conv dw / s1 3 × 3 × 256 dw 28 × 28 × 256
Conv / s1 1 × 1 × 256 × 256 28 × 28 × 256
Conv dw / s2 3 × 3 × 256 dw 28 × 28 × 256
Conv / s1 1 × 1 × 256 × 512 14 × 14 × 256
Conv dw / s1 3 × 3 × 512 dw 14 × 14 × 512
Conv / s1 1 × 1 × 512 × 512 14 × 14 × 512
Conv dw / s1 3 × 3 × 512 dw 14 × 14 × 512
Conv / s1 1 × 1 × 512 × 512 14 × 14 × 512
Conv dw / s1 3 × 3 × 512 dw 14 × 14 × 512
Conv / s1 1 × 1 × 512 × 512 14 × 14 × 512
Conv dw / s1 3 × 3 × 512 dw 14 × 14 × 512
Conv / s1 1 × 1 × 512 × 512 14 × 14 × 512
Conv dw / s1 3 × 3 × 512 dw 14 × 14 × 512
Conv / s1 1 × 1 × 512 × 512 14 × 14 × 512
Conv dw / s2 3 × 3 × 512 dw 14 × 14 × 512
Conv / s1 1 × 1 × 512 × 1024 7 × 7 × 512
Conv dw / s2 3 × 3 × 1024 dw 7 × 7 × 1024
Conv / s1 1 × 1 × 1024 × 1024 7 × 7 × 1024
Avg Pool / s1 Pool 7 × 7 7 × 7 × 1024
FC / s1 1024 × 1000 1 × 1 × 1024
Softmax / s1 Classifier 1 × 1 × 1000

Table A.1: Architecture of MobileNet model taking a 224 × 224 × 3 input image
(Howard et al., 2017)
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A.2 COCO labels

class name class id class name class id
unlabeled 0 wine glass 46
person 1 cup 47
bicycle 2 fork 48
car 3 knife 49
motorcycle 4 spoon 50
airplane 5 bowl 51
bus 6 banana 52
train 7 apple 53
truck 8 sandwich 54
boat 9 orange 55
traffic light 10 broccoli 56
fire hydrant 11 carrot 57
street sign 12 hot dog 58
stop sign 13 pizza 59
parking meter 14 donut 60
bench 15 cake 61
bird 16 chair 62
cat 17 couch 63
dog 18 potted plant 64
horse 19 bed 65
sheep 20 mirror 66
cow 21 dining table 67
elephant 22 window 68
bear 23 desk 69
zebra 24 toilet 70
giraffe 25 door 71
hat 26 tv 72
backpack 27 laptop 73
umbrella 28 mouse 74
shoe 29 remote 75
eye glasses 30 keyboard 76
handbag 31 cell phone 77
tie 32 microwave 78
suitcase 33 oven 79
frisbee 34 toaster 80
skis 35 sink 81
snowboard 36 refrigerator 82
sports ball 37 blender 83
kite 38 book 84
baseball bat 39 clock 85
baseball glove 40 vase 86
skateboard 41 scissors 87
surfboard 42 teddy bear 88
tennis racket 43 hair drier 89
bottle 44 toothbrush 90
plate 45

Table A.2: COCO labels (Lin et al., 2015)
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A.3 Cropped images

(a) 01.09.2023 - First frame of video S1 (b) 01.09.2023 - First frame of video S2

(c) 17.10.2023 - First frame of video O1 (d) 17.10.2023 - First frame of video O2
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A.4 Counting Lines

(a) 01.09.2023 - Counting lines on video
S1

(b) 01.09.2023 - Counting lines on video
S2

(c) 17.10.2023 - Counting lines on video
O1

(d) 17.10.2023 - Counting lines on video
O2
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A.5 Variation in minimum detection threshold

This appendix contains the visual results on the video of Bessieres bridge of the first
of September. The algorithm used is the mobilenet-v2 and the sorting threshold for
the tracks is 0.3.

(a) 01.09.2023 - 0.25 detection threshold

(b) 01.09.2023 - 0.3 detection threshold

(c) 01.09.2023 - 0.5 detection threshold

(d) 01.09.2023 - 0.75 detection threshold
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A.6 Tracks for video S1

(a) 30f (b) 60f (c) 90f

Figure A.4: Visualisation of the tracks of mnet0.5 on video S1

(a) 30f (b) 60f (c) 90f

Figure A.5: Visualisation of the tracks of mnet0.35 on video S1

(a) 30f (b) 60f (c) 90f

Figure A.6: Visualisation of the tracks of pnet0.5 on video S1

(a) 30f (b) 60f (c) 90f

Figure A.7: Visualisation of the tracks of pnet0.35 on video S1
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A.7 Tracks for video S2

(a) 30f (b) 60f (c) 90f

Figure A.8: Visualisation of the tracks of mnet0.5 on video S2

(a) 30f (b) 60f (c) 90f

Figure A.9: Visualisation of the tracks of mnet0.35 on video S2

(a) 30f (b) 60f (c) 90f

Figure A.10: Visualisation of the tracks of pnet0.5 on video S2

(a) 30f (b) 60f (c) 90f

Figure A.11: Visualisation of the tracks of pnet0.35 on video S2
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A.8 Tracks for video O1

(a) 30f (b) 60f (c) 90f

Figure A.12: Visualisation of the tracks of mnet0.5 on video O1

(a) 30f (b) 60f (c) 90f

Figure A.13: Visualisation of the tracks of mnet0.35 on video O1

(a) 30f (b) 60f (c) 90f

Figure A.14: Visualisation of the tracks of pnet0.5 on video O1

(a) 30f (b) 60f (c) 90f

Figure A.15: Visualisation of the tracks of pnet0.35 on video O1
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A.9 Tracks for video 04

(a) 30f (b) 60f (c) 90f

Figure A.16: Visualisation of the tracks of mnet0.5 on video O2

(a) 30f (b) 60f (c) 90f

Figure A.17: Visualisation of the tracks of mnet0.35 on video O2

(a) 30f (b) 60f (c) 90f

Figure A.18: Visualisation of the tracks of pnet0.5 on video O2

(a) 30f (b) 60f (c) 90f

Figure A.19: Visualisation of the tracks of pnet0.35 on video O2
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A.10 Origin/Destination tables for video S1

Origin Destination
1 0 0
2 8 14
3 12 13
4 1 4
5 111 102

(a) 30f

Origin Destination
1 0 0
2 9 18
3 12 13
4 2 4
5 114 105

(b) 60f

Origin Destination
1 0 0
2 10 19
3 12 13
4 2 5
5 114 109

(c) 90f

Table A.3: O/D counts for video S1, mnet0.5

Origin Destination
1 4 2
2 27 46
3 52 42
4 4 5
5 178 170

(a) 30f

Origin Destination
1 4 2
2 28 50
3 53 42
4 6 7
5 182 174

(b) 60f

Origin Destination
1 4 2
2 29 50
3 53 42
4 8 8
5 179 174

(c) 90f

Table A.4: O/D counts for video S1, mnet0.35

Origin Destination
1 0 0
2 6 21
3 3 1
4 0 0
5 1 0

(a) 30f

Origin Destination
1 0 0
2 7 21
3 4 1
4 0 0
5 1 0

(b) 60f

Origin Destination
1 0 0
2 7 22
3 4 1
4 0 0
5 1 0

(c) 90f

Table A.5: O/D counts for video S1, pnet0.5

Origin Destination
1 0 0
2 7 28
3 6 1
4 0 0
5 1 0

(a) 30f

Origin Destination
1 0 0
2 7 28
3 6 1
4 0 0
5 1 0

(b) 60f

Origin Destination
1 0 0
2 8 26
3 6 1
4 0 0
5 1 0

(c) 90f

Table A.6: O/D counts for video S1, pnet0.35
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A.11 Origin/Destination tables for video S2

Origin Destination
1 6 8
2 118 88
3 1 0
4 187 238

(a) 30f

Origin Destination
1 6 9
2 118 90
3 1 0
4 192 246

(b) 60f

Origin Destination
1 7 9
2 118 92
3 1 0
4 195 251

(c) 90f

Table A.7: O/D counts for video S2, mnet0.5

Origin Destination
1 14 14
2 231 194
3 3 6
4 325 415

(a) 30f

Origin Destination
1 15 15
2 244 204
3 3 5
4 328 425

(b) 60f

Origin Destination
1 15 16
2 247 208
3 3 5
4 331 428

(c) 90f

Table A.8: O/D counts for video S2, mnet0.35

Origin Destination
1 0 0
2 1 0
3 0 0
4 0 0

(a) 30f

Origin Destination
1 0 0
2 1 0
3 0 0
4 0 0

(b) 60f

Origin Destination
1 0 0
2 1 0
3 0 0
4 0 0

(c) 90f

Table A.9: O/D counts for video S2, pnet0.5

Origin Destination
1 0 0
2 0 0
3 0 0
4 0 0

(a) 30f

Origin Destination
1 0 0
2 0 0
3 0 0
4 0 0

(b) 60f

Origin Destination
1 0 0
2 0 0
3 0 0
4 0 0

(c) 90f

Table A.10: O/D counts for video S2, pnet0.35
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A.12 Origin/Destination tables for video O1

Origin Destination
1 6 3
2 6 6
3 79 53
4 0 1
5 68 82

(a) 30f

Origin Destination
1 7 3
2 6 6
3 79 54
4 0 1
5 67 84

(b) 60f

Origin Destination
1 7 3
2 6 6
3 80 54
4 0 1
5 67 86

(c) 90f

Table A.11: O/D counts for video O1, mnet0.5

Origin Destination
1 13 10
2 11 15
3 135 100
4 1 2
5 92 117

(a) 30f

Origin Destination
1 13 10
2 12 15
3 135 101
4 1 3
5 93 120

(b) 60f

Origin Destination
1 13 12
2 12 15
3 136 101
4 1 3
5 93 120

(c) 90f

Table A.12: O/D counts for video O1, mnet0.35

Origin Destination
1 0 0
2 1 0
3 4 1
4 0 0
5 0 0

(a) 30f

Origin Destination
1 0 0
2 1 0
3 5 1
4 0 0
5 0 0

(b) 60f

Origin Destination
1 0 0
2 1 0
3 4 1
4 0 0
5 0 0

(c) 90f

Table A.13: O/D counts for video O1, pnet0.5

Origin Destination
1 0 0
2 1 0
3 4 3
4 0 0
5 0 0

(a) 30f

Origin Destination
1 0 0
2 1 0
3 4 2
4 0 0
5 0 0

(b) 60f

Origin Destination
1 0 0
2 1 0
3 5 2
4 0 0
5 0 0

(c) 90f

Table A.14: O/D counts for video O1, pnet0.35
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A.13 Origin/Destination tables for video O2

Origin Destination
1 4 4
2 17 30
3 0 0
4 76 117

(a) 30f

Origin Destination
1 5 4
2 18 31
3 0 1
4 76 118

(b) 60f

Origin Destination
1 6 4
2 18 31
3 0 1
4 76 119

(c) 90f

Table A.15: O/D counts for video O2, mnet0.5

Origin Destination
1 16 11
2 60 74
3 0 2
4 111 157

(a) 30f

Origin Destination
1 16 11
2 63 80
3 0 2
4 116 159

(b) 60f

Origin Destination
1 16 12
2 63 83
3 0 2
4 118 160

(c) 90f

Table A.16: O/D counts for video O2, mnet0.35

Origin Destination
1 0 0
2 0 0
3 0 0
4 0 0

(a) 30f

Origin Destination
1 0 0
2 0 0
3 0 0
4 0 0

(b) 60f

Origin Destination
1 0 0
2 0 0
3 0 0
4 0 0

(c) 90f

Table A.17: O/D counts for video O2, pnet0.5

Origin Destination
1 0 0
2 0 0
3 0 0
4 0 0

(a) 30f

Origin Destination
1 0 0
2 0 0
3 0 0
4 0 0

(b) 60f

Origin Destination
1 0 0
2 0 0
3 0 0
4 0 0

(c) 90f

Table A.18: O/D counts for video O2, pnet0.35
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